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1 Department of Theoretical Physics, University of Silesia, ul. Uniwersytecka 4, 40 007
Katowice, Poland

E-mail: magda@phys.us.edu.pl

Abstract. The standard tight-binding dispersion relation for graphene and carbon nanotubes
has an electron-hole symmetry. This symmetry has not been observed experimentally until
recently. We discuss here the effect of the overlap between π-orbitals at neighbouring sites,
belonging to different sublattices, on the dispersion relation. The e-h asymmetry increases with
the degree of overlap, although this effect is visible only for energy bands far from the Fermi
level. We estimate the observable effects of this asymmetry on the DOS which could be observed
in conductivity measurements and explain the symmetry found in the experiment. The degree
of the overlap determines also the magnitude of the magnetic moment induced in the nanotube
by the Aharonov-Bohm magnetic flux.

1. Introduction
Carbon nanotubes belong to the most promising materials for nanotechnology. It is therefore
worthwhile to investigate their properties in detail. In calculations involving the dispersion
relation of nanotubes it is commonly assumed that they inherit the standard tight-binding dis-
persion of graphene, and the periodic conditions around the nanotube quantize the momenta,
forming energy bands [1]. In calculations concerning small nanotubes their curvature must also
be taken into account. Its main consequences are a change in the angle between neighbouring
π-bonds, in their length, and in the degree of σ − π hybridization. It has been theoretically
predicted and confirmed experimentally [2] that the curvature opens a band gap at the Fermi
level. This gap decreases with increasing nanotube radius and almost vanishes at d ≈ 1.5nm.
In the present paper we will investigate another contribution to the tight-binding model which
is important also in large nanotubes. It is usually assumed that the π orbitals on the two sub-
lattices of graphene do not intersect and the energy spectrum has the electron-hole symmetry.
However it was found that in graphene the neighbouring π orbitals overlap, which removes the
electron-hole symmetry of the spectrum. We present below a short study of the effect which this
modification of the standard tight-binding Hamiltonian may have on transport and magnetic
properties of carbon nanotubes.
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2. Dispersion relation
On graphene plane we work in the basis T1 =

√
3ex, T2 = (

√
3/2)ex +(3/2)ey. In this basis the

dispersion relation without overlap on the adjacent carbon sites is
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The subscript S stands for “symmetric” and γ is the hopping integral for graphene, which is
most often assumed to have the value 2.5, 2.7 or 3 eV, depending on the authors.
In real graphene the wavefunctions on neighbouring atoms always overlap, although this overlap
may be small. In order to take this effect into account, a mixing between electrons from the two
sublattices must be introduced. It may be expected that bonding states will not be as profitable
in energy as they were without overlap – and vice versa, the antibonding states will have to
overcome the natural tendency of the wavefunctions to overlap. Indeed, calculations confirm
this intuition, yielding [1]

EA(k) =
ε2p ∓ γ|ES(k)|
1 ± s|ES(k)| , (2)

where s is the value of the overlap, ε2p is the electron’s on-site energy and the A subscript stands
for “asymmetric”. Following [1], we assume s = 0.129. The difference between the symmetric
and asymmetric dispersion is shown in Fig. 1. In both cases the momentum spectrum remains

a) b)

Figure 1. The dispersion relation of graphene. a) symmetric, without considering the overlap,
and b) asymmetric, with overlap s = 0.129 as in [1]. Note the flattening of the valence band,
not so favourable energetically anymore, and the elongation of the conduction band.

the same, determined by the transverse and longitudinal boundary conditions.

k · Ch = kCCh = 2πlc, k · L = kLL = 2πll, lc, ll ∈ Z, (3)

where Ch is the circumference (or the chiral vector) of the nanotube, and L is its length. The
energy bands and the density of states are different in the two cases. Close to the Fermi surface,
where the denominator in Eq. (2) is close to 1, the overlap does not result in a visible difference
(see Fig. 2), but far from the Fermi level it is clearly different whether the dispersion takes into
account the overlap or not.
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Figure 2. The density of states in a) metallic and b) semiconducting carbon nanotube, both
in symmetric and asymmetric case. The top plots are in the full range of energies for small
(3,3) metallic and (3,2) semiconducting tubes, for the sake of clarity. The bottom plots show
the density of states of realistic, (20,20) and (20,19) nanotubes close to the Fermi level, in the
range (-1eV, 1eV).

3. π overlap in transport experiments
In the CN’s, as in graphene, there are only two Fermi points. Moreover, due to the small
size of nanotubes, the energy gaps between individual one-dimensional energy subbands are
large. These two features justify the treatment of nanotubes as one-dimensional wires with two
conducting channels. In the Landauer-Büttiker formalism the (undoped) nanotube conductance
of thermally activated electrons is [3]

Gact(T ) =
2e

h

∑
i=1,2

|ti|2
2

exp(∆Ei/kT ) + 1
, (4)

where |ti|2 are the transmission probability in the i-th channel and ∆Ei is the energy gap of
the i-th subband at the Fermi level. In 2004 the group from Delft found a perfect symmetry
between hole and electron energy levels in a semiconducting nanotube [4]. The experiment
was performed in a standard quantum dot device setup, with the nanotube lying across two
electrodes. The quantum dot differential conductance plots showed the electron-hole symmetry
for the doping with up to 20 electrons/holes. This remarkable result, obtained in a transport
experiment, probes the effective doping range of ≈ (−0.15, 0.15)eV. The density of states, ob-
tained numerically, of a CN whose size corresponds to that of the CN used in the experiment
is plotted in the bottom part of Fig. 2b, in the range (-1eV,+1eV). It is clear that the visible
deviation from symmetric DOS appears only when the doping exceeds ∼ ±0.5eV. Thus it follows
from our calculations that e-h symmetry is preserved for small doping, in agreement with the
Delft experiment [4]. The asymmetry of the spectrum due to the overlap can be revealed at
larger doping and, consequently, the overlap of the π-orbitals at adjacent carbon sites can be
determined.

4. π overlap and the orbital magnetic moments
Due to their cylindrical topology carbon nanotubes in magnetic fields parallel to the nanotube
axis display the Aharonov-Bohm effect. One of its manifestations are the persistent currents
[5]. The change of phase of the electron running clockwise around the tube and of the electron
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running anticlockwise produces a shift in their momenta, resulting in a nonequilibrium between
currents carried by electrons with kC and −kC . The net current carried by all the electrons in
the system does not decay provided that ∆Eg > kT , where ∆Eg is the energy gap at the Fermi
level, therefore it is called ’persistent’.
Persistent currents run perpendicular to the axis of the system, and they are not transport
currents – their origin is purely topological. As they run around a closed loop, they induce
an orbital magnetic moment in the nanotube. This magnetic moment determines the magnetic
response of a nanotube in parallel magnetic field. This magnetic moment depends on the value
of the flux penetrating the nanotube and it is given by [6]

µorb(φ, T ) = −πR2 ∂F (φ, T )
∂φ

= −πR2
∑
k

∂Ek(φ)
∂φ

fFD(E, µchem, T ), (5)

where F is the free energy, µ is the chemical potential, φ is the magnetic flux penetrating the
nanotube, and fFD(E, µchem, T ) is the Fermi-Dirac distribution function.
Our theoretical calculations [6] show also that in nanotubes with shifted Fermi level (due to
electron or hole-doping) the response varies depending on the amount of doping (cf. Fig. 3).
This variation changes when the overlap is taken into account. The boundaries between dark and
bright regions correspond to paramagnetic jumps in the persistent current, present when there
are occupied electron states at the Fermi level. The values of doping and magnetic flux at which
these jumps occur reflect the geometry of the Brillouin zone of the nanotube and the features of
the dispersion relation. However, the response at slight doping is again nearly e-h symmetric,
with differences seen only at larger values of doping, especially in the hole-doping (lower) region
of the plot. The fundamental difference between transport phenomena and persistent currents

�

−γ

µchem

γ

�
0 φ φ0
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�
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Figure 3. The magnetic moments (greyscale) dependence on φ and µchem in an armchair (7,7)
nanotube at T = 0K and the doping in the range (−γ, +γ).

is that the latter contain contributions from all states in the Brillouin zone, also those deep
below the Fermi level. Thus, even though the pattern of the magnetic response does not yield
information about the size of the overlap, its amplitude does. The amplitude of the magnetic
moment for a metallic (20,20) and semiconducting (20,19) nanotube with and without overlap
are presented in Table 1. It is plain to see that since ∂E/∂kC is smaller in the asymmetric
case, the individual currents are diminished and the amplitude of the magnetic moment can
drop by a factor of 3 as compared to the symmetric case. As till now there is no conclusive
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Table 1. Amplitude of the magnetic moments in undoped metallic (20,20) and semiconducting
(20,19) nanotubes (L = 0.1µm) with symmetric and asymmetric dispersion relation. T = 0K.

CN type µ0 - symmetric µ0 - asymmetric

metallic 85µB 28µB

semiconducting 52µB 15µB

experiment measuring the magnetic moment, we cannot state which relation is better suited for
CN’s. However, the calculated differences of µorb for the two models are remarkable and when
they are measured they could give us information about the precise value of the π orbital overlap
in carbon nanotubes.
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