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Abstract. We study the electronic spectra of commensurate and incommen-
surate double-wall carbon nanotubes (DWNTs) of finite length. The coupling
between nanotube shells is taken into account as an inter-shell electron tunnel-
ing. Selection rules for the inter-shell coupling are derived. Due to the finite
size of the system, these rules do not represent exact conservation of the crystal
momentum, but only an approximate one; therefore the coupling between lon-
gitudinal momentum states in incommensurate DWNTs becomes possible. The
use of the selection rules allows a fast and efficient calculation of the electronic
spectrum. In the presence of a magnetic field parallel to the DWNT axis, we find
spectrum modulations that depend on the chiralities of the shells.
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1. Introduction

Because of their unusual physical properties, cf e.g. [1, 2], carbon nanotubes have become
promising building blocks for nanotechnology applications and have attracted a lot of attention
since their discovery. Carbon nanotubes can be single walled (SWNT) or multi walled (MWNT),
depending on whether they consist of a single or of several graphene sheets wrapped into coaxial
cylinders (so-called ‘shells’), respectively. Electronic properties of SWNTs have been mostly
understood [1]. For example, SWNTs are usually ballistic conductors [3], and whether a SWNT
is metallic or semiconducting is solely determined by its geometry. However, the situation is
much less clear for MWNTs. In fact, due to the additional shells, MWNTs exhibit qualitatively
different properties to SWNTs. Except for a few experiments, see e.g. [4, 5], MWNTs are
typically diffusive conductors [6, 7], with current being carried by the outermost shell at low
bias [7, 8] and also by inner shells at high bias [9]. A recent experiment reported that the inter-
shell conductance is quite weak and consistent with the tunneling through the orbitals of nearby
shells [10]. The difficulty in a theoretical description of MWNTs lies in the fact that the coaxial
shells have usually different chiralities. In such a case, MWNTs are intrinsically aperiodic, since
a common unit cell for the whole object cannot be defined due to the respective symmetries of
individual shells.

The simplest system in which the inter-shell effects can be studied is a double-
walled nanotube (DWNT). The two shells are coupled by weak van der Waals interactions,
which make inter-shell tunneling possible. DWNTs have been studied in various approaches.
By using ab initio methods on graphite, effective inter-layer hopping integrals have been
found [11], closely matching experimental results [12, 13]. In calculations involving nanotubes,
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the hopping parameters are usually considered to be similar to those in graphite. An
ab initio study of MWNTs [14] correctly predicted the inter-shell distance and freedom
of telescopic and rotational motion of the shells, later confirmed experimentally [15].
Commensurate DWNTs have been thoroughly analyzed, and their electronic spectra [16]–[19]
and transport properties [20] have been discussed. Some authors also investigated the
properties of incommensurate DWNTs, looking at spectral correlations [21, 22] and transport
properties [22]–[26] or simulating their scanning tunneling microscope (STM) images [27].
Each of the transport studies refers in some way to the selection rules for the inter-shell coupling.
They are mentioned in passing in [22] when discussing the tunneling between states in the inner
and outer shells at Fermi points K and K ′. The general analysis of MWNT conduction presented
in [24] relies on the conservation of quasi-crystal momentum to prove that the conductance of
a long MWNT is dominated by the outermost shell. In [25], the authors consider a long DWNT
and calculate the inter-shell resistance, as coming only from the Coulomb drag, i.e. neglecting
the inter-shell tunneling. They find selection rules for the coupling between momentum states in
different shells. Since the interest in the above works is focused on the conduction, they explore
the consequences of those rules mainly close to the Fermi level.

When a uniform magnetic field is applied to a system, interesting and subtle effects occur,
depending on the geometry and topology of the system, due to the Peierls phase [28] acquired
by the electronic wavefunction. For electrons moving in spatially periodic potentials, if the
flux through the elementary cell contains an irrational number of flux quanta, the periodicity
is destroyed and the spectrum becomes fractal [29]. When the field is applied parallel to
the axis of symmetry of a ring or cylinder, it causes the Aharonov–Bohm effect or even
persistent currents [30, 31]. In nanotubes, because of their unique dispersion relation, the field
can induce, e.g. a periodic metal–semiconductor transition, predicted in [32] and observed in
many experiments [33]–[36]. The effects of a uniform magnetic field on the spectrum of a
commensurate DWNT in the vicinity of the Fermi level have also been studied, taking into
account several rotational configurations of the two shells [37, 38]. The tunneling coupling
between shells of a DWNT modifies the spectra of the individual shells, introducing numerous
avoided crossings, which in turn result in the depletion of the density of states (DOS) in one
or more regions of the spectrum [39]. In small fields, this region lies close to the bottom of the
valence band, but when the magnetic field increases, the influence of the inter-shell coupling is
visible in higher energy ranges.

In this work, we extend to finite size DWNTs an approach presented in [23] in which the
Hamiltonian of DWNTs is analyzed in the reciprocal space. We find the selection rules for the
coupling between momentum states and estimate the amplitude of the coupling. This method
has the advantage of being computationally fast, due to the action of the selection rules and can
be applied to commensurate as well as incommensurate DWNTs. For short DWNTs both our
method and the direct diagonalization of the tight-binding Hamiltonian in the real space yield
spectra with the same positions of the van Hove peaks with some mismatches in their heights.
For commensurate DWNTs in parallel magnetic field our result matches the results of [39],
where a similar system has been studied in the real space. We also calculate the electronic
spectra in changing magnetic field for incommensurate DWNTs. We find a periodic closing and
opening of the gap at the Fermi level, as well as a region with depleted DOS. This region evolves
with the magnetic field in a complex way, determined by the geometry of the two shells.

The present paper is organized as follows. In section 2, we introduce various quantities
needed for the characterization of the real and reciprocal space of graphene and of nanotubes.
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The inter-shell tunneling in DWNTs is studied in section 3, where the reciprocal space formula
for the tunneling coupling is derived and analyzed. The coupling changes when a uniform
magnetic field is applied and its influence on the energy spectrum is studied in section 4.
Section 5 concludes the present work.

2. Direct and reciprocal lattice structure of DWNTs

2.1. Graphene

Various nanostructures, such as nanotubes, graphene ribbons or nanocones [40, 41] can be
treated as fragments of a graphene sheet (figure 1) with appropriate boundary conditions. For
later purposes, we briefly recapitulate how to characterize the graphene lattice and its electronic
spectrum and how to adapt this description to the case of carbon nanotubes. The honeycomb
lattice of graphene is generated by two basis vectors of equal length, and the angle between
them is 60◦. We choose their Cartesian coordinates as

a1 = (
√

3a0, 0), a2 =

(√
3

2
a0,

3

2
a0

)
, (1)

where a0 = 1.42 Å is the length of a C–C bond. The elementary cell contains two atoms which
generate the two sub-lattices of graphene through the translations by multiples of a1, a2. The
atoms A and B in the elementary cell are shifted with respect to the origin of coordinates
by vectors τ A and τ B , respectively. We will refer to these vectors as the sub-lattice shifts. In
Cartesian coordinates, which we have chosen, they are given by

τ A = (0, 0), τ B = (0, a0). (2)

The generators of the reciprocal lattice are

b1 =

(
2π

√
3a0

,−
2π

3a0

)
, b2 =

(
0,

4π

3a0

)
. (3)

A common starting point for the calculation of the band structure of graphene is the tight-
binding model for non-interacting pz electrons [1], described by the Hamiltonian

H =

∑
〈i j〉

γ0c†
iσc jσ , (4)

where γ0 ∼ −2.9 eV is the hopping integral in graphene; i and j are the pz orbitals of carbon
atoms at positions i and j , respectively; σ denotes the electron spin and the sum runs over
nearest neighbors in the real space. The dispersion relation can be derived (see section 3 for
details). It reads

εν(k)= νγ0

√
3 + 2 cos(k · a1)+ 2 cos(k · a2)+ 2 cos(k · (a2 − a1)), (5)

where ν = +1 in the conduction band and ν = −1 in the valence band. This dispersion relation
has the characteristic shape of a double crown, with six Fermi points—only two of them being
geometrically inequivalent. A fragment of the atomic lattice of graphene and its reciprocal lattice
are shown in figure 1.
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Figure 1. Direct and reciprocal lattice of graphene. (a) Atomic structure of the
honeycomb lattice with two sub-lattices A and B and the lattice generators a1 and
a2. Vectors d i connect the atoms from sub-lattice A with their nearest neighbors.
(b) The first Brillouin zone of graphene and the reciprocal lattice generators b1

and b2. The background is a gray-scale map of the negative part of the dispersion
relation in γ0 units.

2.2. SWNT

A SWNT can be described as a rectangular patch of graphene with two opposite sides joined
together by periodic boundary conditions (figure 2(a)). The vector defining the circumference
of the SWNT is called the chiral vector and is uniquely defined by two coordinates in the basis
of lattice generators

Ch = m1a1 + m2a2, m1,m2 ∈ Z. (6)

Because of the hexagonal symmetry of graphene this notation is redundant. In particular, the
nanotube with (−m1,−m2) is identical to the one with (m1,m2), and (m2,m1) is its mirror
image. The convention is to keep m1 > m2 and m2 > 0. In most nanotubes, a chiral arrangement
of atoms can be observed along the nanotube. There are only two combinations of parameters
that describe achiral nanotubes: (m, 0) corresponding to the so-called zigzag tubes and (m,m)
corresponding to armchair tubes. The nanotubes can also be viewed as objects created by a
repeated translation of a unit cell, defined by the vectors Ch and T (see figure 2(a)):

T = −
m1 + 2m2

dR
a1 +

2m1 + m2

dR
a2. (7)

Here, dR is the greatest common divisor of (m1 + 2m2) and (2m1 + m2). The boundary conditions
around the circumference of the nanotube (in transverse direction) are always periodic (PBC).
There are two ways of dealing with the boundary conditions along the nanotube axis (in the
longitudinal direction), resulting in the same spectrum. One way is to consider open boundary
conditions (OBCs) with the wavefunctions defined on the length of the nanotube. The other way
is to consider PBCs on a nanotube twice that length and to choose only the energy eigen-
functions which are antisymmetric with respect to the center of the extended tube. Physically,
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Figure 2. Characterization of an armchair nanotube. (a) Unrolled nanotube patch
(light gray) on a graphene lattice—the chiral vector is (5,5) and the nanotube
has only four unit cells. The area of the unit cell, spanned by vectors Ch and
T , is marked in dark gray. (b) The Brillouin zone of graphene (dashed lines)
and the reciprocal cell (solid lines) of an infinite (5,5) tube with the allowed
momentum states. (c) The electronic sub-bands of an infinite (5,5) nanotube.
Quantum numbers of the sub-bands in the conduction band E > 0 are the same
as their equivalents in the valence band.

this means that we choose only those wavefunctions that are reflected from the end of the
original tube (or the center of the extended tube) with opposite phase. This restriction removes
both the level degeneracy caused by PBC and the k‖ = 0 eigenstate, which is symmetric with
respect to the center of the extended tube.

The boundary conditions cause the quantization of momentum

k = (k⊥, k‖)=

(
2π

Ch
l⊥,

π

L
l‖

)
, l⊥, l‖ ∈ Z, (8)

where L = M |T | is the length of the nanotube, equal to M unit cells. Note that in (8), OBC
along the nanotube axis have been assumed. In infinite nanotubes, k‖ is continuous and the
allowed momentum states are a set of lines of constant k⊥. Instead of working in the quantized
hexagonal Brillouin zone of graphene, it is more comfortable to define a rectangular unit cell
of the reciprocal space, with the area equal to that of the Brillouin zone and yielding the same
energy spectrum (figure 2(b)). We shall refer to it as the reciprocal cell. It is spanned by vectors
b⊥ and b‖ given in the basis of graphene reciprocal lattice generators by

b⊥ =
2m1 + m2

dR
b1 +

m1 + 2m2

dR
b2, (9a)

b‖ = −
m2

S
b1 +

m1

S
b2. (9b)

Note that the coordinates of b⊥ are integer, therefore b⊥ is always a reciprocal lattice vector.
Note also that, since l⊥ = k⊥ R, the angular momentum is h̄ l⊥. The projection of the lines of
constant k⊥ on the dispersion relation reduces the full two-dimensional (2D) spectrum to a set of
1D sub-bands, numbered by their value of angular momentum quantum number l⊥ (figure 2(c)).
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Figure 3. Systems of co-ordinates used to describe a location on a DWNT. (a)
Two graphene layers. The vectors ρa and ρb describing the relative position of
the graphene patches of the two shells (armchair a and zigzag b) and shifts τ a, τ b

between A and B sub-lattices in both shells are indicated. (b) Schematic view of
a DWNT and its system of coordinates (x⊥ and x‖).

The number S of sub-bands in one band, equal to the number of allowed values of l⊥, is the
number of graphene unit cells in the unit cell of the nanotube

S(m1,m2)=
2(m2

1 + m1m2 + m2
2)

dR
. (10)

Each sub-band has a positive and a negative energy branch, accounting for the presence of two
atoms in the graphene unit cell. In the reciprocal cell, all sub-bands contain equal number of k‖

states. In finite nanotubes, the 1D sub-bands are further discretized, and a nanotube containing
M unit cells has M longitudinal momentum values in each of the S sub-bands. Therefore,
0< l‖ 6 M and the allowed range of l⊥ is [ − S/2, S/2 − 1].

2.3. DWNT

A DWNT consists of two coaxial SWNT, also called shells. The inter-shell distance 1 is
typically of the order of 3.4 Å [42]. The coupling between two shells can be taken into account
as an inter-shell tunneling of electrons. The implications of this tunneling will be explored in
section 3. A schematic picture of a DWNT and its system of coordinates is shown in figure 3.

In the present paper, we will be using several systems of coordinates, each of them suitable
for a particular purpose. For the first two of the three systems of coordinates we start from two
graphene layers separated by a distance |Rb − Ra|. Each point on one of the constituent 2D
graphene layers of a DWNT can be described either by the Cartesian coordinates (x, y) or by
the nanotube patch coordinates (x⊥, x‖). The third possibility is the system defined by (a1, a2),
but this one is used only in the definition of the nanotube chirality Ch. When the nanotube is
rolled, it becomes a 3D object and the most natural coordinate system is the cylindrical one.
The cylindrical coordinates (r, ϕ, z) of a point on the shell β are related to the 2D nanotube
coordinates (x⊥, x‖) by

(r, ϕ, z)β =

(
Rβ,

x⊥β

Rβ
, x‖β

)
. (11)
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In the reciprocal space, we use only the 2D coordinates of the graphene layers. The vectors
G in the reciprocal space can be expressed as (n1, n2) in the graphene basis of (b1, b2), i.e.
G = n1b1 + n2b2, or as (G⊥,G‖) in the basis of (b⊥, b‖) spanning the reciprocal cell of a
nanotube (see (9a) and (9b)).

3. Effective inter-shell coupling in DWNTs

The starting point for our investigation of the consequences of the inter-shell electron tunneling
is a tight-binding model for noninteracting pz electrons on each shell of the carbon nanotube [1].
The tight-binding Hamiltonian of a DWNT is obtained from that of two graphene sheets a and
b placed on top of each other at a distance |Ra − Rb| by imposing periodic boundary conditions
along the directions determined by the chiral vectors Cha = (m1a,m2a) and Chb = (m1b,m2b)

(see (6)). The DWNT Hamiltonian is

H = H0 + Ht =

∑
βσ

∑
〈i j〉

γ0c†
βiσcβ jσ +

∑
i jσ

trai ,rbj c
†
aiσcbjσ + h.c., (12)

where the operators c†
β jσ and cβ jσ are creation and annihilation operators of an electron with

spin σ on shell β at site j , respectively. Here β = a, b is the shell index and, as in (4), 〈i j〉 is a
sum over nearest neighbors and γ0 ∼ −2.9 eV is the intra-shell nearest-neighbor coupling. The
spin-independent inter-shell coupling tai,bj is assumed to depend exponentially on the distance
between two atoms, d(rai , rbj), as

trai ,rbj = t0 cos θi j e−(d(rai ,rbj )−1)/at , (13)

where t0 ∼ −0.36 eV, 1∼ 0.34 nm, θi j is the angle between the pz orbitals of the two atoms,
and at ∼ 0.45 Å [1] is a parameter controlling the range of the tunneling. We adopt here the
second approach to the boundary conditions along the nanotube axis, described in section 2.2.
We extend our DWNT to twice its original length, assume periodic boundary conditions, and
reject all solutions which are symmetric with respect to the center of the extended nanotube.
The sum over i, j runs therefore over the extended nanotube.

It is convenient to express the Hamiltonian in the basis of plane waves in each individual
shell [1, 43]. We introduce the electron operators

cβ jσ =
1√
2Nβ

∑
k

eik·r j cβp( j)kσ , c†
β jσ =

1√
2Nβ

∑
k

e−ik·r j c†
βp( j)kσ ,

where p = A, B is the index for the two interpenetrating sub-lattices in a graphene sheet, and
Nβ is the number of graphene unit cells on shell β. The extended tube has twice as many atoms
as the original one, hence the

√
2 in the normalization factor. The Hamiltonian takes the form

H =

∑
βpkσ

γkc†
βpkσcβp′kσ +

∑
ka kb

∑
pa pbσ

Tpa pb(ka, kb)c
†
apa kaσ

cbpb kbσ
+ h.c., (14)

where the intra-shell coupling is γk =
∑3

j=1 γ0eik·d j , with d j the vectors connecting an A sub-
lattice atom to its three nearest neighbors in sub-lattice B (figure 1(a)). The position of each
atom in the graphene patch can be expressed as rβ = R + Xβ , with R a graphene lattice vector,
Xβ = ρβ + τ βp, where ρa − ρb describes the relative position of the two shells and τ βp is the
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appropriate sub-lattice shift, cf figure 3 and equation (2). The elements of the inter-shell 2 × 2
coupling matrix can be expressed as [43]

Tpa pb(ka, kb)=

∑
Ga Gb

eiGa ·Xa−iGb·Xb tka+Ga,kb+Gb . (15)

Here, G is the graphene reciprocal lattice vector G = n1b1 + n2b2 ≡ (n1, n2). The inter-shell
coupling has the form

tqa,qb
=

1

A2
cell

√
4Na Nb

∫
drad rbei(qb·rb−qa ·ra)tra,rb, (16)

with Acell the area of a graphene unit cell and the integral taken over the area of the system, in
our case over the extended nanotube. For the purpose of calculating the energy spectrum, it is
better to use the basis of the eigenstates (Bloch states) of the Hamiltonian (14) in the absence of
inter-shell coupling. This can be achieved by the unitary transformation

U =
1

√
2

(
γk

|γk|
−

γk

|γk|

1 1

)
. (17)

The tunneling matrix elements between two Bloch states in different shells can be obtained as

T̃νaνb = (U †T U )νaνb . (18)

Here ν = ∓ is the index for two graphene bands corresponding to negative/positive energies
εβ,ν(k) with β = a, b, where the dispersion relation of these bands is, cf (5),

εβ,ν(k)= νγ0

√
3 + 2 cos(k · a1)+ 2 cos(k · a2)+ 2 cos(k · (a2 − a1)).

The electronic momenta are quantized according to the boundary conditions

kβ · Chβ =
2π

Chβ
l⊥β, kβ · 2Lβ =

2π

2Lβ
l‖β, l⊥β, l‖β ∈ Z. (19)

In order to calculate the inter-shell coupling (16) we shall use nanotube coordinates,
(R, x⊥/R, x‖). The distance between two atoms a and b with cylindrical coordinates
(Ra, ϕa, za) and (Rb, ϕb, zb) is thus

d(ra, rb)≡ D

(
x⊥b

Rb
−

x⊥a

Ra
, x‖b − x‖a

)

=

√
|Ra − Rb|

2 + 4Ra Rb sin2

[
1

2

(
x⊥b

Rb
−

x⊥a

Ra

)]
+ (x‖b − x‖a)2.

For our value of the parameter at, cosθi j ≈ 1. Given the form (13), the inter-shell coupling (16)
becomes

tqa,qb
= t0

∫ 2π

−2π
dv1

∫ 2La

−2Lb

dv2
e−(D(v1,v2)−1)/at

A2
cell

√
4Na Nb

eiv1(q⊥b Rb+q⊥a Ra)eiv2(q‖b+q‖a) (20a)

×

∫ 4π

0
du1

∫ 2(La+Lb)

0
du2 eiu1(q⊥a Ra−q⊥b Rb) eiu2(q‖a−q‖b) (20b)

=: A(qa, qb) I (qa, qb),
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with v1 = (x⊥a/Ra − x⊥b/Rb), v2 = x‖a − x‖b, and u1 = (x⊥a/Ra + x⊥b/Rb) and u2 = (x‖a +
x‖b). We denoted with A(qa, qb) the amplitude of the coupling (it includes all numerical factors),
while I (qa, qb) contains the functions which determine the selection rules discussed below and
which appear upon performing the integration in (20b). It reads

I (qa, qb)= δ̃ (π(q⊥a Ra − q⊥b Rb))× δ̃

(
La + Lb

2
(q‖a − q‖b)

)
, (21)

where δ̃(x) := sin(x)/x and qa = ka + Ga, qb = kb + Gb. The resulting selection rules act
differently on the angular and longitudinal degrees of freedom. It is when considering the latter
that the issue of incommensurability arises. The additional integration over v1, v2 yields the
amplitude of the coupling A(qa, qb). Although the integrals in (20a) are finite, the support of
the integrand is well within the integration limits, which can therefore be extended to (−∞,∞).
Thus, we find

A(qa, qb)= tk exp
{
−

1at

8Ra Rb
(q⊥a Ra + q⊥b Rb)

2

}
× exp

{
−
1at

8
(q‖a + q‖b)

2

}
, (22)

where tk ∼ −0.66 eV contains both t0 and all other numerical factors arising from the
integrations. From (15) it follows that (22) and (21) have to be evaluated for qa = ka + Ga, qb =

kb + Gb, with kβ satisfying the boundary conditions (19). It clearly shows that contributions
from distant regions of the momentum space are exponentially suppressed. For (k + G) > 2π/a0

they are already negligible, therefore the sum in (15) can be limited to only a few terms.

3.1. Selection rules

The selection function I (ka + Ga, kb + Gb) determines whether the coupling between ka and kb

is allowed. Note that all integer values of x/π are zeroes of δ̃ = sin(x)/x , except x = 0 where
δ̃(0)= 1.

Transverse degree of freedom. The angular momentum l⊥β = k⊥βRβ can take only integer
values and G⊥βRβ = n1βm1β + n2βm2β ∈ Z. Therefore δ̃ acts for the transverse degree of
freedom q⊥ R in the same way as a normal Dirac δ.

Longitudinal degree of freedom. The longitudinal momentum is k‖β =
2π

2Lβ
l‖β . The

longitudinal component of a reciprocal lattice vector is

(Gβ)‖ = (n1βb1β + n2βb2β)‖ = Mβ

2π

dR Lβ

[
(2m1β + m2β)n2β − (m1β + 2m2β)n1β)

]
, (23)

where Mβ is the number of unit cells in shell β, Lβ = Mβ |T β |. The value of q‖β can therefore
always be represented as π

Lβ
l ′

β . If both shells are of equal lengths La = Lb = L , which is only
possible in commensurate DWNTs,

δ̃

(
La + Lb

2
(q‖a − q‖b)

)
= δ̃(π(l ′

‖a − l ′

‖b))= δ(l ′

‖a − l ′

‖b). (24)

In incommensurate DWNTs, the two shells always have different lengths and the proper
selection function is δ̃. However, as (22) shows, the amplitude of the coupling decreases strongly
with the length of qa, qb, therefore only a finite region of the reciprocal space is active in
the coupling, i.e. gives a non-vanishing contribution. If the mismatch between shell lengths is
small enough, we can still approximate δ̃ by the Dirac δ in the whole active region. Depending
on which level of precision in this approximation we find acceptable, the maximum allowed
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mismatch can be large or small. We study only DWNTs for which (La + Lb)(q‖a − q‖b)/2< π/4
in the active region and use the Dirac-δ selection rules below.

L⊥a + (m1an1a + m2an2a)= l⊥b + (m1bn1b + m2bn2b), (25a)

l‖a +Fa(n1a, n2a)= l‖b +Fb(n1b, n2b), (25b)

with
Fβ(n1β, n2β)= 2

Mβ

dR

(
(2m1β + m2β)n1β − (m1β + 2m2β)n2β

)
.

In the infinite DWNTs [23], the integral over u2 in (20b) runs over infinity and the longitudinal
selection rule becomes a true Dirac δ(q‖a − q‖b). The longitudinal momentum is continuous,
which means that for any pair of momenta k‖a, k‖b exists at least one pair of Ga, Gb such
that q‖a, q‖b fulfil the selection rule, therefore in principle all longitudinal momentum states
are coupled. However, in actual computation only the contributions from the active region of
the reciprocal space count and many of the couplings vanish, reestablishing the division of the
momentum space into independent subspaces, as was the case in finite DWNTs.

3.2. Angular momentum: coupling between sub-bands

In this section, we analyze the implications of (25a), i.e. we find the set of states which fulfill
the angular momentum selection rules. As an example we consider the commensurate DWNT
(5,5)@(10,10). The amplitude function A (22) is greatest in the regions in the reciprocal space
corresponding to small values of Ga, Gb. Among the reciprocal cells of dominant contributions
we find

(i) Ga = (n1a, n2a)= (0, 0), Gb = (0, 0) ⇒ l⊥b = l⊥a,

(ii) Ga = (−1, 0) or (0,−1), Gb = (−1, 0) or (0,−1) ⇒ l⊥b = l⊥a + 5, (26)

(iii) Ga = (1, 0) or (0, 1), Gb = (1, 0) or (0, 1) ⇒ l⊥b = l⊥a − 5,

(iv) Ga = (1, 1) or (−1,−1), Gb = (1, 1) or (−1,−1) ⇒ l⊥b = l⊥a − 10.

For example, l⊥a = 0 yields in case (i) l⊥b = 0, in case (ii) l⊥b = 5, in case (iii) l⊥b = −5 and
in case (iv) l⊥b = −10. These coupled states are shown in figure 4, where for clarity only the
states with l‖a = 0, l‖b = 0 are shown. Other combinations of Ga, Gb would in this DWNT yield
the same results. All combinations listed above fulfill also the second selection rule (25b) for
l‖a = l‖b.

When we apply the selection rules (25a) in turn to all the found l⊥b, we find other l⊥a states
which also couple to the l⊥b’s found above. It turns out that in this particular DWNT the sets of
coupled states contain only a few elements. For each initial l⊥a = l0 ∈ [0, 4], the set of coupled
angular momentum values consists of l⊥a = l0 − 5, l0 and l⊥b = l0 − 10, l0 − 5, l0, l0 + 5. This
is a rather unusual situation, occurring only when the chiral indices of one shell are integer
multiples of those in the other. In an average DWNT, the coupled sets are larger.

3.3. Longitudinal momentum—the issue of commensurability

In our calculations we consider only DWNTs in which the two shells have equal or very similar
length. If1L < a0/8 we are allowed to use δ-like selection rules and the physical space divides
into subspaces containing the coupled longitudinal momentum states. The Hamiltonian matrix
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Figure 4. Coupled sub-bands in a (5,5)@(10,10) DWNT. As an example we
consider the point d = (l⊥a, l‖a)= (0, 0)a belonging to the reciprocal space of
the inner shell. b1 and b2 are the graphene reciprocal lattice generators (3).
After appropriate translations by graphene reciprocal lattice generators b1, b2 (3)
the state (l⊥a, l‖a)= (0, 0)a generates the inner shell states a, a′, b, b′ and c, c′.
According to (26) each of these states couples to its counterpart a, . . . , c′ in the
outer (10,10) shell, resulting in a nonzero coupling.

acquires a block-diagonal structure with the size of the blocks determined by the geometry of
the shells.

The active region of the reciprocal space can contain several reciprocal cells contributing
to the coupling, which causes the mixing of longitudinal momentum states. The number of
involved reciprocal cells and therefore of coupled longitudinal momenta increases with the
size of the direct lattice unit cell. If the unit cell ratio of the two shells is rational, χ = p/q
where p, q ∈ N, the length of the DWNT is L = q M |T a| = pM |T b|. The selection rules split
the momentum space into M subspaces, each containing the full set of sub-bands ({l⊥}) for q
longitudinal states in shell a and p longitudinal states in shell b. The size of each subspace is
2(q Sa + pSb).

In the case of incommensurate DWNTs, the lengths of the shells can be chosen so
as to minimize 1L and allow us to use the exact conservation of crystal momentum, as
explained above. If these optimal values of shell lengths can be expressed as La = q̃ M |T a|

and Lb = p̃M |T b|, where p̃, q̃ ∈ N, the Hamiltonian splits into M diagonal blocks, each of the
size 2(q̃ Sa + p̃Sb). The ratio p̃/q̃ is in fact a rational approximation of the irrational χ and the
precision of this approximation depends on the required value of the difference between shell
lengths.

The difference between the commensurate and incommensurate shells is shown in figure 5
in the case of two finite linear chains.

3.4. Energy spectrum at the Fermi level

The details of the spectrum at the Fermi level depend on the form of both intra- and inter-shell
interaction, most notably on whether the curvature of the nanotube is taken into account or not.
Among the effects of curvature in SWNTs are the rehybridization of σ and π bonds and varying
angle between π orbitals [44, 45]. They result in variations in the bond length and bond angle
between the lattice atoms, which can cause the opening of a diameter-dependent gap at the Fermi
level in metallic SWNTs. Moreover, the band structure at the Fermi level depends on the relative
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Figure 5. Possible couplings between momentum states in commensurate and
incommensurate finite chains. Solid black lines mark the first Brillouin zones, ba

and bb are the reciprocal lattice generators on chain a and b, respectively. Filled
dots stand for states in the first Brillouin zones, open dots for the states in the rest
of the reciprocal space. Dashed gray rectangles mark the regions in which the
momenta on different chains match under δ̃. Black dashed arrows connect states
which are coupled after the translational equivalence has been taken into account.
(a) Commensurate chains with unit cell ratio 2/3. The couplings between states
1a, 1b and 2a, 2b are the result of direct matching of momenta. The state 3a has
the same momentum as 3b, but 3b is equivalent to 1b under the translation by
bb, which means that 3a and 1b are also coupled. Similar situation occurs for 4a

and 4b, which are equivalent to 1a and 2b, and so forth. In the end, all states are
coupled, although the coupling may be weak. It is possible to define a common
Brillouin zone, with the length 2π/3aa = 2π/2ab. (b) Incommensurate chains
with unit cell ratio 1/

√
3. The lengths of the chains cannot match—here they are

chosen as three unit cells of chain a and two unit cells of chain b. The momenta
in chain a are shifted with respect to those in chain b, but this mismatch is not
large and the same couplings as in the case a) occur.

position of the shells, as was found to be the case in a (5,5)@(10,10) DWNT studied in [17, 27].
When the (5,5)@(10,10) DWNT is in a configuration of maximum symmetry D5h [18, 46],
the only effect of the inter-shell hopping is a uniform split and shift of the Fermi sub-bands,
resulting in the presence of four sub-band crossings. If the symmetry of the system is lowered,
four pseudogaps (the largest of the order of 0.1 eV) open in the spectrum [17].

When, as in this work, curvature effects are neglected, only a sub-band shift is observed
(see figure 7)—in other words, our nanotube is always in the configuration of maximum
symmetry. Due to the small size of the curvature-induced gap, we think that our model still
yields a reliable description also of band features near the Fermi energy.

The presence of a uniform shift between the sub-bands of a (5,5)@(10,10) DWNT can
be understood by considering just the coupling between the Fermi sub-bands. The general
Hamiltonian (14) for ka and kb becomes a 4 × 4 matrix if all other couplings are ignored.
In the sub-lattice basis, it has the form

H(ka,kb)=


0 |γa|eiθa tab tabeiϕAB

|γa|e−iθa 0 tabeiϕB A tabeiϕB B

tab tabe−iϕB A 0 |γb|eiθb

tabe−iϕAB tabe−iϕB B |γb|e−iθb 0

 , (27)
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where γβ(kβ)= γ0
∑3

j=1 exp(ikβ · d j)=: |γβ | exp(iθβ), tab is the coupling amplitude between
ka,kb from (22) and ϕνν′ = iGa · τaν − iGb · τbν′ is the phase associated with hopping between
different sub-lattices. It is clear that ϕB B = ϕAB +ϕB A. When this Hamiltonian is expressed with
the help of (17) in the valence/conduction basis, it becomes

H(ka,kb)=


|γa| 0 T̃++ T̃+−

0 −|γa| T̃−+ T̃−−

T̃ ∗

++ T̃ ∗

−+ |γb| 0

T̃ ∗

+−
T̃ ∗

−−
0 −|γb|

. (28)

The elements of the coupling matrix in this basis are

T̃++ =
tab

2

(
ei(θb−θa) + ei(θb+ϕB A) + e−i(θa−ϕAB) + ei(ϕAB +ϕB A)

)
, (29)

T̃+− =
tab

2

(
−ei(θb−θa) − ei(θb+ϕB A) + e−i(θa−ϕAB) + ei(ϕAB +ϕB A)

)
, (30)

T̃−+ =
tab

2

(
−ei(θb−θa) + ei(θb+ϕB A) − e−i(θa−ϕAB) + ei(ϕAB +ϕB A)

)
, (31)

T̃−− =
tab

2

(
ei(θb−θa) − ei(θb+ϕB A) − e−i(θa−ϕAB) + ei(ϕAB +ϕB A)

)
. (32)

In order to analyze the nature of the sub-band split at the Fermi level, we need to evaluate
γ (kβ), tab, ϕAB and ϕB A. Let us begin with the in-shell part. For Fermi sub-bands the angular
momentum is l⊥a = −5 and l⊥b = −10. We can rewrite γ (kβ) as a function of the distance
between longitudinal momentum and the Fermi point, 1k = k‖ − kF. Both sub-bands have the
same position in the reciprocal cell of the armchair nanotube, therefore γa(1k)= γb(1k). The
examination of γ (1k) reveals that its phase has only two values:

γ (1k)=

∣∣∣∣∣γ0

(
2 cos

(
π

3
+

√
3

2
1ka0

))∣∣∣∣∣×
{

ei2π/3, 1k < 0,
e−iπ/3, 1k > 0

. (33)

In the inter-shell part we have to perform a sum over reciprocal lattice vectors as in (15). The
vectors which give the dominant contribution to the coupling are Ga = b1,Gb = b1. The phases
associated with hopping between sub-lattices are then

ϕAA = 0, ϕAB =
2π

3
, ϕB A = −

2π

3
, ϕB B = 0. (34)

We have now a situation where θa = θb = θ and ϕAB = −ϕB A = ϕ. The coupling matrix T̃
becomes

T̃ = tab

(
1 + cos(θ −ϕ) −i sin(θ −ϕ)

i sin(θ −ϕ) 1 − cos(θ −ϕ)

)

= tab


(

2 0
0 0

)
, 1k < 0,(

0 0
0 2

)
, 1k > 0.

(35)
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Figure 6. Schematic plot of the band crossing at the Fermi level in a
(5,5)@(10,10) DWNT. (a) The coupling between sub-bands at k < kF and k > kF.
Only the conduction band is affected in the former, only the valence band in
the latter case. (b) Resulting shift of the energy levels close to the Fermi point.
The parts with negative slope are split, the parts with positive slope remain
degenerate.

The coupling does not mix bands and moreover affects only the conduction band for k < kF and
the valence band for k > kF, as shown in figure 6. In consequence, the negative slope parts of the
two sub-bands −5a and −10b are split evenly on both sides of the Fermi point. The results of
our calculation show that there is also a smaller uniform split of the part with positive slope (see
figure 7), which is due to the smaller couplings between −5a and −5b and 5b. This asymmetry
is explained in [47] in real space terms as the result of different phases of the wavefunctions on
sub-lattices A and B. The wavefunctions belonging to the negative slope parts of the sub-bands
have constant phase on the whole circumference, whereas the wavefunctions belonging to the
unshifted parts have different phases on sub-lattices A and B, therefore they cannot hybridize
so well.

3.5. Results

In order to test our method we calculated the electronic spectra of a short commensurate
(5,5)@(10,10) and a short incommensurate (9,0)@(10,10) DWNT, both by the k-space method
described above and by direct diagonalization of the Hamiltonian in the real space. Our test
DWNTs have both shells of equal or very similar length. The commensurate DWNT consists
of 120 unit cell lengths of both the inner and outer armchair. The incommensurate DWNT has
75 unit cells of the zigzag shell and 130 of the armchair. The mismatch between shell lengths is
0.17a0, which still allows us to use the exact selection rules (25b). The spectra calculated by both
methods match well (figure 8). The asymmetry between the valence (E < 0) and conduction
(E > 0) bands, seen also in [22], is due to the inter-shell tunneling. The wave functions of
the coupled momentum states hybridize and form bonding and antibonding combinations, with
greatest energy differences in the bottom of the valence band.

The coupling between momentum states is felt most strongly by states with low
momentum, but its consequences can also be seen at the Fermi level. In our model, which
neglects curvature effects, the band structure at the Fermi level does not depend on the shell
shift. In the k-space approach the relative position of the shells enters only through a phase
factor in the coupling matrix (15) and does not affect the energy eigenvalues. We have tested
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Figure 7. Sub-bands at the Fermi level in a (5,5)@(10,10) DWNT. For
independent shells (a) the sub-bands at the Fermi level are degenerate, but when
the inter-shell tunneling is allowed (b), the degeneracy is removed. The energy
levels in the ‘partial real space’ method were obtained by defining a DWNT
supercell and using the Bloch theorem in the longitudinal direction.

our prediction for a (5,5)@(10,10) DWNT using a ‘partial real space’ method. We defined a
supercell containing one unit cell of the outer and one of the inner shell. Then we used the
Bloch theorem in the longitudinal direction and the spectrum that we obtain is also insensitive
to the shell shift (figure 7).

4. DWNT in parallel magnetic field

4.1. The inter-shell coupling

When a magnetic field is applied to a system, it usually changes the system’s symmetries,
since the vector potential A depends on the spatial coordinates. As a consequence the wave
function of a charged particle moving in the magnetic field gathers a phase factor during its
motion. This is due to the modification of the momentum operator, p → p − qA, known as
the minimal coupling principle or the Peierls substitution. The translation operator T , where
T (x)ψ(r)= ψ(r + x) (r is a position vector and x is the translation vector), is modified
accordingly by the Peierls phase [28]:

T (x)= exp
(

i

h̄
x · p

)
→ T ′(x)

= exp
{

iq

h̄

∫ r+x

r
A(r′) · dr′

}
T (x). (36)

In a uniform field, the Hamiltonian remains invariant under translations. For the lattices
considered in the tight-binding model this implies that each hopping integral is modified by
the appropriate phase factor.
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Figure 8. Comparison between the DOS of a (5,5)@(10,10) (left panel) and
a (9,0)@(10,10) (right panel) DWNT evaluated by diagonalizing the DWNT
Hamiltonian in real (equation (12)) and reciprocal (equation (14)) space.
n(E)/N is the DOS normalized to 1 (N is the number of atoms in the
nanotube). In (5,5)@(10,10) both shells have 120 unit cells and are 30 nm long.
In the (9,0)@(10,10) the zigzag shell contains 75 unit cells, the armchair—130,
corresponding to the DWNT length of approximately 32 nm. Notice the breaking
of the electron–hole symmetry due to the inter-shell tunneling.

The influence of the magnetic field has been most extensively studied in the two simplest
cases—of a uniform magnetic field perpendicular to the flat lattice, and a uniform magnetic field
parallel to the axis of a system with cylindrical topology.

In the former case, the application of the magnetic field changes or destroys the periodicity
of a lattice. If the magnetic flux through the area of the elementary cell is rational, φcell = p/q φ0,
where p, q ∈ Z and φ0 = e/h is the flux quantum, it is possible to define an enlarged elementary
cell, containing q original ones, pierced by p flux quanta. Thus the lattice remains periodic,
although with a different period. If the flux through the elementary cell is irrational, φcell/φ0 /∈Q,
the periodicity is removed altogether and the spectrum of the system is fractal. The plots of the
energy spectrum versus φcell are known as ‘Hofstadter butterflies’ [29].

In systems such as rings and cylinders, a uniform magnetic field parallel to the axis gives
rise to the Aharonov–Bohm effect. In simple systems its consequence is a shift of all the angular
momentum states by the number of flux quanta flowing through its cross-section, φcross-section/φ0.
The change in the spectrum is periodic with a period φ0 [30]–[32]. In DWNTs tunneling can
also occur between shells and the Peierls phase enters not only into the in-shell term, but also
into the inter-shell hopping (see figure 9) and (12) becomes

H(A)=

∑
βσ

∑
〈i, j〉

γ0 exp

{
ie

h̄

∫ rβi

rβ j

A(r′)dr′

}
c†
βiσcβ jσ

+

∑
i, j,σ

t (rai , rbj) exp

{
ie

h̄

∫ rai

rbj

A(r′)dr′

}
c†

aiσcbjσ + h.c.

. (37)
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Figure 9. DWNT in a uniform magnetic field parallel to its axis in tangential
gauge. The atoms ia on the inner shell a and jb on the outer shell b bind to
their in-shell neighbors and with each other. A phase factor comes into the
Hamiltonian with each bond.

In the cylindrical coordinates and the tangential gauge we have chosen, A = (Ar , Aϕ, Az)=

(0, Br/2, 0). The phase factors attached to in-shell bonds are

exp

{
ie

h̄

∫ rβ j

rβi

A(r′)dr′

}
= ei

φβ
φ0
(ϕβ j −ϕβi)

= ei(φβ/φ0)((x⊥βi/Rβ )−(x⊥β j/Rβ )), (38)

where φβ is the magnetic flux through the shell β. The dispersion relation contains therefore a
dependence on the magnetic flux:

εβ,ν(k, φβ)= εβ,ν((k⊥β, k‖β), φβ)= εβ,ν

((
k⊥β +

φβ

φ0

2π

Chβ
, k‖β

)
, 0
)
. (39)

The phase factor in the term describing the inter-shell interaction is

exp
{

ie

h̄

∫ rbj

rai

A(r′) · dr′

}
=

i

3

φa

φ0

(
x⊥bj

Rb
−

x⊥ai

Ra

)(
1 +

Rb

Ra
+
(

Rb

Ra

)2
)

=: i
(

x⊥bj

Rb
−

x⊥ai

Ra

)
F

(
φa

φ0

)
. (40)

The inter-shell coupling is analogous to (15) except that tqa,qb depends on the magnetic flux
threading the DWNT. It is given by

tqa,qb(φa)= tk δ̃ (π(q⊥b Rb − q⊥a Ra)) δ̃

(
La + Lb

2
(q‖b − q‖a)

)
(41a)

× exp
{
−
1at

8

(
q‖b + q‖a

)2
}

(41b)

× exp

{
−

1at

8Ra Rb

(
q⊥b Rb + q⊥a Ra + 2F

(
φa

φ0

))2
}
, (41c)
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where tk ∼ 0.66 eV. The magnetic field B enters the Hamiltonian only as the flux through inner
and outer shells. The flux through the outer shell can be expressed as φb = (Rb/Ra)

2φa and in
the following we shall present all quantities depending on the magnetic field as functions of the
flux through the inner shell, φa.

As we can see from the δ̃ function in (41a), the selection rules do not depend on the
magnetic field. They determine once and for all the quantum numbers of the coupled states,
although for some pairs the main contribution to the sum in (15) may come from a very distant
reciprocal cell. The strength of the coupling, however, does depend on the amount of magnetic
flux through the system. At vanishing field, the most strongly coupled states are those with
low momentum; at higher fields, the maximum coupling can occur between states with energy
close to the Fermi level or even to the top of the conduction band. From (41c) we see that the
strength of the coupling between angular momenta evolves with the magnetic field, whereas
the coupling between longitudinal states (41b) remains unchanged. This is to be expected,
because the longitudinal motion of the electron does not accumulate the Peierls phase. It is
clear that as the flux through the DWNT is increased, the dominant terms in the sum (15) come
from reciprocal cells with varying G⊥ but constant G‖ = 0.

Let us analyze the influence of the magnetic field on the coupling between individual
sub-bands. As an example we take the l⊥a = 0 and l⊥b = −10, l⊥b = 0 sub-bands of the
(5,5)@(10,10) DWNT. The value of l‖a = l‖b = 1 shall be assumed implicitly. In the absence of
the magnetic field the coupling between sub-bands (0a, 0b) is dominant, whereas the coupling
between (0a,−10b) almost vanishes. As we increase the magnetic field, the predominant
coupling switches between (0a, 0b) and (0a,−10b), while also oscillating in amplitude. The
switching occurs periodically and the period can be evaluated from (41c). The maxima of the
coupling occur when the exponent vanishes:

(l⊥a + na Sa)+ (l⊥b + nb Sb)+
2

3

(
1 +

Rb

Ra
+
(

Rb

Ra

)2
)
φa max

φ0
= 0. (42)

The first maximum of (0a, 0b) coupling occurs at φa = 0. The next maximum coupling is
between (0a,−10b) and occurs at

−10 − 10 + 4.67
φa max

φ0
= 0 ⇒ φa max ≈ 4.29φ0.

The period of the oscillation of the coupling amplitude is 8≈ 4.29φ0. The switching between
dominant couplings ((0a, 0b) and (0a,−10b)), depending on which reciprocal cell is active,
is shown in figure 10. With the magnetic field increasing from 0, the reciprocal cells of the
dominant contribution change in the sequence

φa = 0, Ga = 0, Gb = 0,

φa =8, Ga = −1(b1 + b2), Gb = 0,

· · ·

φa = 2n8, Ga = −2n(b1 + b2), Gb = −n(b1 + b2),

φa = (2n + 1)8, Ga = −(2n + 1)(b1 + b2), Gb = −n(b1 + b2),

where n = 1, 2, . . . . If the origins of the shells are aligned, ρa = ρb = 0 (see figure 3), the phase
factors from (15) change with the period 68, common to all pairs of coupled states. If any
of the ρ’s is nonzero, the factor exp(iG · ρ) is periodic in φ only for ρ = qa0, with q being
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Figure 10. Sub-bands coupled to l⊥a = 0 in the inner shell of a (5,5)@(10,10)
DWNT and the reciprocal cells of the main contributions. As the magnetic field
increases, more distant cells are involved and the dominant coupling switches
between (l⊥a, l⊥b)= (0a, 0b) and (0a,−10b) with the period 8≈ 4.29φ0.

rational. Otherwise the phase factors in (15) vary in the magnetic field without showing any
periodicity. In DWNTs, where the chiral indices of the outer shell are not integer multiples of
those in the inner shell, the coupling between l⊥a = 0 and its partners in the outer shell also
strengthens and weakens periodically. For example, in a (6,6)@(11,11) armchair nanotube the
sub-band 0a is coupled to all the even-numbered sub-bands in the outer shell. In the absence
of the magnetic field the dominant coupled pair is (0a, 0b). As the field increases, the dominant
pair becomes (0a, 10b), then (0a,−2b) and so forth. The distance between subsequent maxima
of the coupling strength can be found as above, by minimizing the exponent in (41c) and in
this particular DWNT it is 8≈ 5.81φ0. In an incommensurate (9,0)@(10,10) the situation is
analogous and the oscillation period is 8.16φ0.

4.2. Results

We performed numerical calculations of the DWNT spectra and explored the evolution
of coupled states for several combinations of chiralities. In figure 11, we show the
behavior of the coupling between two sets of states of a (5,5)@(10,10) DWNT in the
magnetic field. Those sets are (la⊥, la‖) ∈ {(−5, 1), (0, 1)} in the inner shell and (lb⊥, lb‖) ∈

{(−10, 1), (−5, 1), (0, 1), (5, 1)} in the outer. In the regions where the coupled states have both
similar energies and strong coupling we notice the appearance of avoided crossings. Their size
and position in the spectrum is governed by four factors depending on the magnetic field:

(i) the amplitude of the coupling (41b),(41c),

(ii) the phase factors (15),

(iii) the dispersion relations εa,ν(k, φa/φ0) and εb,ν(k, φa/φ0) (39).
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Figure 11. The evolution of two sets of coupled states in a (5,5)@(10,10) DWNT.
The inner shell states are (l⊥a, l‖a) ∈ {(−5, 1), (0, 1)}, the outer shell (l⊥b, l‖b) ∈

{(−10, 1), (−5, 1), (0, 1), (5, 1)}. The abscissa corresponds to the inner flux in
φ0 units, the ordinate to the energy. (a) The energy of the states (−5, 1)b (black),
(5, 1)b (light gray) and (−5, 1)a. The latter is shown either in dark gray, if the
prevailing coupling is (−5, 1)a with (−5, 1)b or in medium gray if (−5, 1)a with
(5, 1)b dominates. The width of the lines gives additional information about
the size of the coupling, e.g. at φa ≈ 24φ0 the prevailing coupling is between
(−5, 1)a and (5, 1)b (wide medium gray and light gray lines), which are also
close in energy. The state (−5, 1)b has a much higher energy and couples to
(−5, 1)a very weakly (small black dots). At border values of φa where the
dominant coupling switches phase, black lines are drawn. (b) The difference
between the energy spectrum for this subspace obtained without inter-shell
tunneling (t0 = 0) and with the tunneling of the magnitude t0 = γ0/8. (c) The
analogon of (a), but for the sets of states (−10, 1)b (black), (0, 1)b (light gray)
and (0, 1)a (medium or dark gray, depending on the prevalent coupling). It can be
seen that at flux values where the energies of strongly coupled states are close,
there is a distinctive avoided crossing in the energy spectrum, such as e.g. at
φa = 0 or φa ≈ 4φ0 in (c) or φa ≈ 24φ0 and φa ≈ 36φ0 in (a). The corresponding
regions of large avoided crossings are marked. Whether the crossing occurs in
the valence or conduction band is determined by the phase factor in (15) for the
Brillouin zone of the dominant contribution.
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Figure 12. The density of states in a (6,6)@(10,10) DWNT in varying parallel
magnetic field. (a) Without inter-shell tunneling the DOS is a sum of the DOS
in both shells. (b) The inter-shell coupling causes a change in the DOS, varying
with the strength of the magnetic field. Here the coupling constant is t0 = γ0/8.

In this particular case, the spectrum is periodic in φa—the strength of the coupling oscillates
with the period8= 30φ0/7, the phase factors with the period 68, the energy of the inner states
with the period φ0 and the energy of the outer states with the period (Rb/Ra)

2φ0 = 4φ0. At
φa = 180φ0 the initial spectrum is recovered. Nevertheless, in other DWNTs Rb/Ra is usually
irrational and it is in general impossible to find a common period for these four functions.
The numerically calculated DOS plots of several nanotubes show features absent in uncoupled
DWNTs (see figure 12). The coupling between states from the two shells causes a series of
avoided crossings, resulting in a whole region in which the density of states is depleted, observed
also in [39]. In small magnetic field this region is at the bottom of the valence band, where
the momenta in both shells are small. As the inter-shell tunneling evolves with the increasing
magnetic field and higher momentum states become involved, the main region with avoided
crossings shifts also towards higher energies.

These snake-like patterns are a statistical result, caused by many states. Their details vary
according to the chiralities of the DWNT’s shells. In armchair nanotubes the most strongly
coupled states are at the band edges, and the avoided crossing affects van Hove singularities. In
other nanotubes, the strongest coupling can occur farther from the band edges, especially when
the magnetic field is large. These energy gaps evolving in the middle of the band give rise to
less distinctive snake structures which can be seen seen in figure 13, where they are caused by
the presence of a zigzag shell.

The evolution of the density of states with the magnetic field is a superposition of two
patterns at different scales. Features with steep E/φ slope are caused by the outer shell, which
feels a flux greater than that in the inner shell and evolves faster with the magnetic field. The
features with mild slope are due to the inner shell.

Characteristic of the evolution of the DOS near the Fermi level with the magnetic field
is the periodic opening and closing of the gap, causing a series of metal–semiconductor
transitions, predicted in [48] and observed a few years ago in [33, 34]. These can be seen
as the empty diamonds along the E = 0 line in figure 14. In a (6,6)@(11,11) nanotube, the
inter-shell tunneling mixes the sub-bands from both shells, increasing the DOS at the Fermi
level whenever both nanotubes have closed gaps, e.g. at φ = 0 and φ ≈ 2φ0 in figure 14(a).
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Figure 13. The DOS of an incommensurate (9,0)@(10,10) DWNT in varying
magnetic field. Note that in most of the energy ranges the density of states seems
decreased in comparison with the commensurate case in figure 12. This effect is
due to a very high DOS at the van Hove singularities occurring at ±γ0, typical
for the zigzag nanotubes.

In an incommensurate (10,0)@(11,11) DWNT the coupling between shells affects at the Fermi
level only the DOS of the inner shell—due to the coupling the band crossing is slightly
shifted towards positive energies—the large diamonds are shifted with respect to the small
ones in figure 14(b). This is a consequence of the structure of the reciprocal cell of the zigzag
shell, where the Fermi point (sub-bands crossing) is at l‖ = 0, whereas for the armchair it is
at l‖ = 2lF/3. The amplitude of the coupling decreases exponentially with the value of the
momentum, therefore the zigzag sub-bands at the Fermi level are affected more strongly by
the coupling than the armchair sub-bands. In transport experiments, where mostly the outer
shell is probed, this shift might be visible if the zigzag shell is on the outside.

5. Conclusions

In this work, we started from an inter-shell tunneling Hamiltonian given in the real space and
derived its equivalent in the reciprocal space. In a commensurate (5,5)@(10,10) DWNT the
band structure obtained with this method agrees with that obtained by the partial real-space
method described in section 3.5, down to the fine details of the sub-band crossings near the
Fermi level. As shown in section 3.4, this method allows us also to study the spectrum near the
Fermi level analytically. Although for small nanotubes the curvature (which we neglect) can
cause a dependence of the spectrum at the Fermi level on the relative position of the shells [17],
we expect this effect to decrease strongly with the nanotube diameter. Our method is therefore
suitable for the realistic DWNTs with diameters above 2 nm [49].

When this method is applied to the DWNTs in the parallel magnetic field, we observe
complex geometrical patterns developing in the DOS of the nanotubes. The most prominent ones
are at energies inaccessible experimentally, but we find the effects of the inter-shell coupling
also at the Fermi level. In a double-armchair DWNT we find the metallic character of the tube
persists also at φ > 0, whereas without this coupling the system would become semiconducting
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Figure 14. The evolution of the DOS at the Fermi level with magnetic field
in a commensurate (6,6)@(11,11) (a) and incommensurate (10,0)@(11,11) (b)
DWNT. The closing and opening of the gap can be seen in both cases. In (a),
the peaks belonging to different shells are mixed, in (b) the only effect of the
inter-shell coupling is a shift of the band crossing in the zigzag shell.

immediately after switching on the field. In an incommensurate zigzag@armchair DWNT, we
find the band crossing of the zigzag shell shifted towards higher energies, whereas the band
structure at the Fermi level in the armchair shell is almost unaffected by the inter-shell coupling.

The real-space methods of finding the spectrum of long commensurate DWNTs, where it
is possible to define a common unit cell, are usually fast enough. In the case of incommensurate
DWNTs, the real-space approach must be either to diagonalize the Hamiltonian of the whole
DWNT, or to squeeze or stretch one of the shells so that they become commensurate and an
approximate supercell can be found. The former is very costly in terms of computation time
and memory, the second involves a deformation of the lattice of one or both shells. Solving the
Schrödinger equation in momentum space, as described here, allows us to use the selection rules
and significantly reduce the size of the matrices to diagonalize. This method has been proven
correct for short incommensurate nanotubes and for long commensurate DWNTs in a parallel
magnetic field, where it gives the same results as those obtained in [39]. It may be a useful tool
in investigating other properties of DWNTs.
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Appendix. Derivation of the inter-shell coupling matrix elements

In this appendix we give an explicit derivation of the elements of the inter-shell coupling matrix,
(15). By expressing the Hamiltonian in the basis of plane waves in each shell, the inter-shell

New Journal of Physics 11 (2009) 033031 (http://www.njp.org/)

http://www.njp.org/


25

coupling Hamiltonian Ht between two shells a and b can be written as

Ht =

∑
i jσ

trai ,rbj c
†
aiσcbjσ + h.c.

=
1

√
Na Nb

∑
i jσ

∑
ka kb pa pb

e−ik·rai +ik·rbj trai ,rbj c
†
apa kaσ

cbpb kbσ
+ h.c.,

where pa, pb = A, B are the indices for the two interpenetrating sub-lattices, Na and Nb are the
number of graphene unit cells on shells a and b, respectively. A carbon atom can be found in
graphene at the position r = R + ρ + τ p, where R is a graphene lattice vector and ρ and τ are
two vectors that specify the atom position, cf figure 3(a). The sum over all the lattice sites can
be carried out as

1
√

Na Nb

∑
i j

e−ik·rai +ik·rbj trai ,rbj =
1

√
Na Nb

∑
Ra Rb pa pb

e−ik·rai +ik·rbj trai ,rbj

∣∣∣
ra=Ra+ρ+τ pa ,rb=Rb+ρ+τ pb

=
1

√
Na Nb

∑
pa pb

∫
dradrb

∑
Ra Rb

δ(ra − (Ra + ρ + τ pa))

× δ(rb − (Rb + ρ + τ pb))e
−ik·rai +ik·rbj trai ,rbj

=
1

√
Na Nb A2

cell

∑
Ga Gb pa pb

eiGa ·(ρ+τ pa )−iGb·(ρ+τ pb )

×

∫
dradrbe−i(ka+Ga)·ra+i(kb+Gb)·rb trai ,rbj ,

where we have replaced the sum over the lattice vectors R by the sum over the reciprocal lattice
vector G as ∑

R

δ(r − (R + ρ + τ p))=
1

Acell

∑
G

e−iG·(r−ρ−τ p)

with Acell being the area of a graphene unit cell. Thus we obtain the expression for the elements
of the inter-shell coupling matrix, (15).

References

[1] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London:
Imperial College Press)

[2] Loiseau A, Launois P, Petit P, Roche S and Salvetat J-P (ed) 2006 Understanding Carbon Nanotubes: From
Basics to Applications (Berlin: Springer)

[3] White C T and Todorov T N 1998 Carbon nanotubes as long ballistic conductors Nature 393 240
[4] Frank S, Poncharal P, Wang Z L and de Heer W A 1998 Carbon nanotube quantum resistors Science 280 1744
[5] Urbina A, Echeverria I, Perez-Garrido A, Diaz-Sanchez A and Abellan J 2003 Quantum conductance steps

in solutions of multiwalled carbon nanotubes Phys. Rev. Lett. 90 106603
[6] Langer L, Bayot V, Grivei E, Issi J-P, Heremans J P, Olk C H, Stockman L, van Haesendonck C and

Bruynseraede Y 1996 Quantum transport in a multiwalled carbon nanotube Phys. Rev. Lett. 76 479

New Journal of Physics 11 (2009) 033031 (http://www.njp.org/)

http://dx.doi.org/10.1038/30420
http://dx.doi.org/10.1126/science.280.5370.1744
http://dx.doi.org/10.1103/PhysRevLett.90.106603
http://dx.doi.org/10.1103/PhysRevLett.76.479
http://www.njp.org/


26

[7] Bachtold A, Strunk C, Salvetat J-P, Bonard J-M, Forro L, Nussbaumer T and Schönenberger C 1999
Aharonov–Bohm oscillations in carbon nanotubes Nature 397 673

[8] Fujiwara A, Tomiyama K and Suematsu H 1999 Quantum interference of electrons in multiwall carbon
nanotubes Phys. Rev. B 60 13492

[9] Collins P G, Hersam M, Arnold M, Martel R and Avouris Ph 2001 Current saturation and electrical breakdown
in multiwalled carbon nanotubes Phys. Rev. Lett. 86 3128–31

[10] Bourlon B, Miko C, Forró L, Glattli D C and Bachtold A 2004 Determination of the intershell conductance
in multiwalled carbon nanotubes Phys. Rev. Lett. 93 176806

[11] Charlier J-C, Gonze X and Michenaud J-P 1991 First-principles study of the electronic properties of graphite
Phys. Rev. B 43 4579

[12] Misu A, Mendez E E and Dresselhaus M S 1979 Near infrared reflectivity of graphite under hydrostatic
pressure: 1. Experiment J. Phys. Soc. Japan 47 199

[13] Ohta T, Bostwick A, McChesney J L, Seyller T, Horn K and Rotenberg E 2007 Interlayer interaction and
electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy
Phys. Rev. Lett. 98 206802

[14] Charlier J C and Michenaud J P 1993 Energetics of multilayered carbon tubules Phys. Rev. Lett. 70 1858
[15] Cumings J and Zettl A 2000 Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes

Science 289 602
[16] Saito R, Dresselhaus G and Dresselhaus M S 1993 Electronic structure of double-layer graphene tubules

J. Appl. Phys. 73 494
[17] Kwon Y-K and Tomanek D 1998 Electronic and structural properties of multiwall carbon nanotubes Phys.

Rev. B 58 R16001
[18] Li T S, Lin M F, Ho Y H and Ho G W 2006 Electronic excitations of double-walled armchair carbon nanotubes

Physica E 32 569
[19] Pincak R and Pudlak M 2007 Electronic properties of double-layer carbon nanotubes arXiv:0712.4346v1
[20] Triozon F, Roche S, Rubio A and Mayou D 2004 Electrical transport in carbon nanotubes: role of disorder

and helical symmetries Phys. Rev. B 69 121410
[21] Ahn K-H, Kim Y-H, Wiersig J and Chang K J 2003 Spectral correlation in incommensurate multiwalled

carbon nanotubes Phys. Rev. Lett. 90 026601
[22] Uryu S 2004 Electronic states and quantum transport in double-wall carbon nanotubes Phys. Rev. B 69 075402
[23] Wang S and Grifoni M 2005 Helicity and electron-correlation effects on transport properties of double-walled

carbon nanotubes Phys. Rev. Lett. 95 266802
[24] Yoon Y-G, Delaney P and Louie S G 2002 Quantum conductance of multiwall carbon nanotubes Phys. Rev.

B 66 073407
[25] Lunde A M, Flensberg K and Jauho A P 2005 Intershell resistance in multiwall carbon nanotubes: a Coulomb

drag study Phys. Rev. B 71 125408
[26] Wang S, Grifoni M and Roche S 2006 Anomalous diffusion and elastic mean free path in disorder-free

multiwalled carbon nanotubes Phys. Rev. B 74 121407
[27] Lambin Ph, Meunier V and Rubio A 2000 Electronic structure of pholychiral carbon nanotubes Phys. Rev.

B 62 5129
[28] Peierls R 1933 Zur theorie des diamagnetismus von leitungselektronen Z. Phys. 80 763
[29] Hofstadter D R 1976 Energy levels and wave functions of bloch electrons in rational and irrational magnetic

fields Phys. Rev. B 14 2239
[30] Büttiker M 1985 Small normal-metal loop coupled to an electron reservoir Phys. Rev. B 32 1846
[31] Cheung H-F, Gefen Y, Riedel E K and Shih W-H 1988 Persistent currents in small one-dimensional metal

rings Phys. Rev. B 37 6050
[32] Ajiki H and Ando T 1993 Electronic states of carbon nanotubes J. Phys. Soc. Japan 62 1255
[33] Minot E D, Yaish Y, Sazonova V and McEuen P 2004 Determination of electron orbital magnetic moments

in carbon nanotubes Nature 428 536

New Journal of Physics 11 (2009) 033031 (http://www.njp.org/)

http://dx.doi.org/10.1038/17755
http://dx.doi.org/10.1103/PhysRevB.60.13492
http://dx.doi.org/10.1103/PhysRevLett.86.3128
http://dx.doi.org/10.1103/PhysRevLett.93.176806
http://dx.doi.org/10.1103/PhysRevB.43.4579
http://dx.doi.org/10.1103/PhysRevLett.98.206802
http://dx.doi.org/10.1103/PhysRevLett.70.1858
http://dx.doi.org/10.1126/science.289.5479.602
http://dx.doi.org/10.1063/1.353358
http://dx.doi.org/10.1103/PhysRevB.58.R16001
http://dx.doi.org/10.1016/j.physe.2005.12.106
http://arxiv.org/abs/0712.4346v1
http://dx.doi.org/10.1103/PhysRevB.69.121410
http://dx.doi.org/10.1103/PhysRevLett.90.026601
http://dx.doi.org/10.1103/PhysRevB.69.075402
http://dx.doi.org/10.1103/PhysRevLett.95.266802
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1103/PhysRevB.71.125408
http://dx.doi.org/10.1103/PhysRevB.74.121407
http://dx.doi.org/10.1103/PhysRevB.62.5129
http://dx.doi.org/10.1007/BF01342591
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.32.1846
http://dx.doi.org/10.1103/PhysRevB.37.6050
http://dx.doi.org/10.1143/JPSJ.62.1255
http://dx.doi.org/10.1038/nature02425
http://www.njp.org/


27

[34] Coskun U C, Wei T-Z, Vishveshwara S, Goldbart P M and Bezryadin A 2004 h/e magnetic flux modulation
of the energy gap in nanotube quantum dots Science 304 1132

[35] Strunk C, Stojetz B and Roche S 2006 Quantum interference in multiwall carbon nanotubes Semicond. Sci.
Technol. 21 38

[36] Lassagne B, Cleuziou J-P, Nanot S, Escoffier W, Avriller R, Roche S, Forró L, Raquet B and Broto J-M 2007
Aharonov–Bohm conductance modulation in ballistic carbon nanotubes Phys. Rev. Lett. 98 176802

[37] Latgé A and Grimm D 2007 Band-gap modulations of double-walled carbon nanotubes under an axial
magnetic field Carbon 45 1905

[38] Lee C H, Hsue Y C, Chen R B, Li T S and Lin M F 2008 Electronic structures of finite double-walled carbon
nanotubes in a magnetic field J. Phys.: Condens. Matter 20 75213

[39] Nemec N and Cuniberti G 2006 Hofstadter butterflies of carbon nanotubes: pseudofractality of the
magnetoelectronic spectrum Phys. Rev. B 74 165411

[40] Charlier J-C and Rignanese G-M 2001 Electronic structure of carbon nanocones Phys. Rev. Lett. 86 5970
[41] Chen I-C, Chen L-H, Ye X-R, Daraio C, Jin S, Orme C A, Quist A and Lal R 2006 Extremely sharp carbon

nanocone probes for atomic force microscopy imaging Appl. Phys. Lett. 88 153102
[42] Ijima S 1991 Helical microtubules of graphitic carbon Nature 354 56
[43] Maarouf A A, Kane C L and Mele E J 2000 Electronic structure of carbon nanotube ropes Phys. Rev.

B 61 11156
[44] Eggert S and Kleiner A 2001 Curvature, hybridization and stm images of carbon nanotubes Phys. Rev.

B 64 113402
[45] Cao J X, Wang D L, Tang Y, Yang Q B, Ding J W and Han X H 2003 Curvature and strain effects on electronic

properties of single-wall carbon nanotubes J. Phys.: Condens. Matter 15 439
[46] Mayer A 2004 Band structure and transport properties of carbon nanotubes using a local pseudopotential and

a transfer-matrix technique Carbon 42 2057
[47] Nemec N 2007 Quantum transport in carbon-based nanostructures PhD Thesis University of Regensburg
[48] Ajiki H and Ando T 1993 Magnetic properties of carbon nanotubes J. Phys. Soc. Japan 62 2470
[49] Hirahara K, Kociak M, Bandow S, Nakahira T, Itoh K, Saito Y and Iijima S 2006 Chirality correlation in

double-wall carbon nanotubes as studied by electron diffraction Phys. Rev. B 73 195420

New Journal of Physics 11 (2009) 033031 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1096647
http://dx.doi.org/10.1088/0268-1242/21/11/S06
http://dx.doi.org/10.1103/PhysRevLett.98.176802
http://dx.doi.org/10.1016/j.carbon.2007.04.019
http://dx.doi.org/10.1088/0953-8984/20/7/075213
http://dx.doi.org/10.1103/PhysRevB.74.165411
http://dx.doi.org/10.1103/PhysRevLett.86.5970
http://dx.doi.org/10.1063/1.2193435
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1103/PhysRevB.61.11156
http://dx.doi.org/10.1103/PhysRevB.64.113402
http://dx.doi.org/10.1088/0953-8984/15/27/101
http://dx.doi.org/10.1016/j.carbon.2004.04.017
http://dx.doi.org/10.1143/JPSJ.62.2470
http://dx.doi.org/10.1103/PhysRevB.73.195420
http://www.njp.org/

	1. Introduction
	2. Direct and reciprocal lattice structure of DWNTs
	2.1. Graphene
	2.2. SWNT
	2.3. DWNT

	3. Effective inter-shell coupling in DWNTs
	3.1. Selection rules
	3.2. Angular momentum: coupling between sub-bands
	3.3. Longitudinal momentum---the issue of commensurability
	3.4. Energy spectrum at the Fermi level
	3.5. Results

	4. DWNT in parallel magnetic field
	4.1. The inter-shell coupling
	4.2. Results

	5. Conclusions
	Acknowledgments
	Appendix.  Derivation of the inter-shell coupling matrix elements
	References

