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Abstract
We present a comprehensive, analytical treatment of the finite Kitaev chain for arbitrary
chemical potential and chain length. By means of an exact analytical diagonalization in the real
space, we derive the momentum quantization conditions and present exact analytical formulas
for the resulting energy spectrum and eigenstate wave functions, encompassing boundary and
bulk states. In accordance with an analysis based on the winding number topological invariant,
and as expected from the bulk-edge correspondence, the boundary states are topological in
nature. They can have zero, exponentially small or even finite energy. Further, for a fixed value
of the chemical potential, their properties are ruled by the ratio of the decay length to the chain
length. A numerical analysis confirms the robustness of the topological states against disorder.

Keywords: Kitaev chain, Majorana zero modes, topological phase, Fibonacci polynomials,
electronic band structure, exact diagonalization

(Some figures may appear in colour only in the online journal)

1. Introduction

The quest for topological quantum computation has drawn a
lot of attention to Majorana zero energy modes (MZM), quasi-
particles obeying non-Abelian statistics hosted by topological
superconductors [1]. The archetypal model of a topological
superconductor in one dimension was proposed by Kitaev [2].
It consists of a chain of spinless electrons with nearest neigh-
bour superconducting pairing, a prototype for p-wave super-
conductivity. As shown by Kitaev in the limit of an infinite
chain, for a specific choice of parameters, the superconductor
enters a topological phase where the chain can host a cou-
ple of unpaired zero energy Majorana modes at the end of the
chain [2]. This model has thus become very popular due to its

3 Authors to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

apparent simplicity and it is often used to introduce topological
superconductivity in one dimension [1, 3]. Also more sophisti-
cated realizations of effective p-wave superconductors, based
on semiconducting nanowire-superconductor nanostructures
[4–11], ferromagnetic chains on superconductors [12–16] or
s-wave proximitized carbon nanotubes [17–19], all rely on
these fundamental predictions of the Kitaev model. While the
theoretical models are usually solved in analytic form for infi-
nite or semi-infinite chains, the experiments are naturally done
on finite-length systems. For example, for the iron chain on
a superconductor investigated in [13] it is expected that the
chain length is shorter than the superconducting coherence
length [20]. Spectral properties of a finite-length Kitaev chain
have been addressed in more recent papers [21–24], and have
confirmed the presence of bound states of exponentially small
energy in sufficiently long finite Kitaev chains.

As noticed by Kao using a chiral decomposition [21], a
finite-length Kitaev chain also supports modes with exact zero-
energy. However, they are only found for discrete values of the
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chemical potential. As shown by Hegde et al, in [22], these
exact zeros can be associated to a fermionic parity crossing in
the open Kitaev chain. Investigations of the finite chain have
also been performed by Zvyagin [23] using the mapping of a
Kitaev chain onto an X–Y model for N spin 1/2 particles in
transverse magnetic field, for which convenient diagonaliza-
tion procedures are known [25, 26]. Kawabata et al in [27]
demonstrated that exact zero modes persist also in a Kitaev
chain with twisted boundary conditions.

Despite much being known by now about the finite length
Kitaev chain, and in particular its low energy properties, the
intricacy of the eigenvector equation still constitutes a chal-
lenge. In this work we address this longstanding problem.
Exact results for the full energy spectrum and the associ-
ated bound states are provided for arbitrary chemical poten-
tial by analytical diagonalization in the real space. Our results
are not restricted to long chains or to long wavelengths,
and thus advance some of the findings in [22, 23] and
respectively [24]. They also complete the analysis of the eigen-
states of an open Kitaev chain performed by Kawabata et al
[27] which was restricted to the exact zero modes. This knowl-
edge allows one a deeper understanding of the topological
properties of the Kitaev chain and, we believe, also of other
one-dimensional p-wave superconductors.

Before summarizing our results, we clarify the notions used
further in our paper. (i) Since ‘phase’ properly applies only to
systems in the thermodynamic limit, we shall use ‘topological
regime’ to denote the set of parameters for which a topolog-
ical phase would develop in an infinite system. (ii) We shall
call ‘topological states’ all boundary states of the finite sys-
tem whose existence in the topological regime is enforced
by the bulk-boundary correspondence [1]. Hence, the exis-
tence of the topological states is associated to a topological
invariant of the bulk system being non trivial. Quite generally,
the topological states can have zero, exponentially small, or
even finite energy. (iii) When the gap between the topologi-
cal states and the higher energy states is of the same order or
larger than the superconducting gap Δ, we consider them to
be ‘robust’ or ‘topologically protected’. Their energy may be
affected by perturbations, but not sufficiently to make them
hybridize with the extended (bulk) states. (iv) All Hamiltonian
eigenstates can be written as superpositions of Majorana (self-
conjugate) components. When the energy of the topological
state is strictly zero, the whole eigenstate has the Majorana
nature and becomes a true ‘Majorana zero mode’ (MZM).

Using our analytical expressions for the eigenstates of a
finite Kitaev chain, we recover in the limit of an infinite chain
the region for the existence of the MZM given by the bulk
topological phase diagram; the latter can be obtained using the
Pfaffian [2] or the winding number [28] topological invariant.
For a finite-length chain MZM only exist for a set of discrete
values of the chain parameters, see equation (87) below, in
line with [21, 27]. These states come in pairs and, depend-
ing on the decay length, they can be localized each at one
end of the chain but they can also be fully delocalized over
the entire chain. Even in the latter case the states are orthog-
onal and do not ‘hybridize’ since they live in two distinct
Majorana sublattices. Similar protection of topological zero

energy modes living on different sublattices has recently been
observed experimentally in molecular Kagome lattices [29].

The paper is organized as follows. Section 2 shortly reviews
the model and its bulk properties. Section 3 covers the finite
size effects on the energy spectrum and on the quantiza-
tion of the wave vectors for some special cases, including
the one of zero chemical potential. The spectral properties
at zero chemical potential are fully understood in terms of
those of two independent Su–Schrieffer–Heeger-like (SSH-
like) chains [27, 30]. The eigenstates at zero chemical poten-
tial, the symmetries of the Kitaev chain in real space, as well
as the Majorana character of the bound state wave functions
are discussed in section 4. In sections 5–7 we turn to the
general case of finite chemical potential which couples the
two SSH-like chains. While section 5 deals with the energy
eigenvalues and eigenvectors of the finite chain, section 6
provides exact analytical results for the MZM. In section 7
the influence of disorder on the energy of the lowest lying
states is investigated numerically. In section 8 conclusions are
drawn. Finally, appendices A–G contain details of the factori-
sation of the characteristic polynomial in real space and the
calculation of the associated eigenstates.

2. The Kitaev chain and its bulk properties

2.1. Model

The Kitaev chain is a one dimensional model based on a lattice
of N spinless fermions. It is characterized by three parame-
ters: the chemical potential μ, the hopping amplitude t, and
the p-wave superconducting pairing constant Δ. The Kitaev
Hamiltonian, written in a set of standard fermionic operators
d j, d†

j, is [1, 2]

ĤKC = −μ
N∑

j=1

d†
jd j +

N−1∑
j=1

(
Δ d†

jd
†
j+1 − t d†

j+1d j + h.c.
)

,

(1)
where the p-wave character allows interactions between parti-
cles of the same spin. The spin is thus not explicitly included
in the following. We consider Δ and t to be real parameters
from now on.

The Hamiltonian in equation (1) has drawn particular atten-
tion in the context of topological superconductivity, due to the
possibility of hosting MZM at its end in a particular param-
eter range [2]. This can be seen by expressing the Kitaev
Hamiltonian in terms of so called Majorana operators γA,B,(

d j

d†
j

)
=:

1√
2

(
1 i
1 −i

) (
γA

j

γB
j

)
,
(
γA,B
)†

= γA,B, (2)

yielding the form

ĤKC = −iμ
N∑

j=1

γA
j γ

B
j + i (Δ+ t)

N−1∑
j=1

γB
j γ

A
j+1

+ i (Δ− t)
N−1∑
j=1

γA
j γ

B
j+1. (3)
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Notice that, in virtue of equation (2) it holds {γA
j , (γA

j )†} =
2 (γA

j )2 = 1, and similarly for γB
j . For the particular parameter

settings Δ = ±t and μ = 0, which we call the Kitaev points,
equation (3) leads to a ‘missing’ fermionic quasiparticle q±:

q+ =
1√
2

(
γA

1 + i γB
N

)
[Δ = t] , (4a)

q− =
1√
2

(
γB

1 + i γA
N

)
[Δ = −t] . (4b)

This quasiparticle has zero energy and is composed of two iso-
lated Majorana states localised at the ends of the chain. In
general, the condition of hosting MZM does not restrict to
the Kitaev points (μ = 0, Δ = ±t). Further information on
the existence of boundary modes is evinced from the bulk
spectrum and the associated topological phase diagram. If
the boundary modes have exactly zero energy, their Majorana
nature can be proven by showing that they are eigenstates of
the particle–hole operatorP . Equivalently, if γ†

M is an operator
associated to such an MZM it satisfies γ†

M = γM and γ2
M = 1/2.

The topological phase diagram is shortly reviewed in
section 2.3.

2.2. Bulk spectrum

The Hamiltonian from equation (1) in the limit of N →∞
reads in k space

ĤKC =
1
2

∑
k

ψ̂†
k H(k)ψ̂k, ψ̂k =

(
dk, d†

−k

)T
, (5)

where we introduced the operators dk =
1√
N

∑
j

e−i j kd d j and k

lies inside the first Brillouin zone, i.e. k ∈
[
− π

d , π
d

]
and d is

the lattice constant. The 2 × 2 Bogoliubov–de Gennes (BdG)
matrix

H(k) =

[
−μ− 2t cos(kd) −2iΔ sin(kd)

2iΔ sin(kd) μ+ 2t cos(kd)

]
(6)

is easily diagonalized thus yielding the excitation spectrum

E±(k) = ±
√

4Δ2 sin2(kd) + [μ+ 2t cos(kd)]2. (7)

Note that for μ = 0 equation (7) predicts a gapped spectrum
whose gap width is either 4Δ (|Δ| < |t|) or 4t (|t| < |Δ|).

2.3. Topological phase diagram

The BdG Hamiltonian (6) is highly symmetric. By con-
struction it anticommutes with the particle–hole symmetry
P = σxK, where K accounts for complex conjugation. The
particle–hole symmetry turns an eigenstate in the k space cor-
responding to an energy E and wavevector k into one asso-
ciated with −E and −k. The time reversal symmetry is also
present in the Kitaev chain and is given by T = 𝟙K. Finally,
the product of T P = C = σx is the chiral symmetry, whose
presence allows us to define the topological invariant in terms
of the winding number [28]. Note that all symmetries square
to +1, placing the Kitaev chain in the BDI class [31].

Figure 1. Topological phase diagram of the Kitaev chain for Δ > 0,
constructed with the winding number invariant equation (8). Distinct
topological phases are separated by the phase boundary at μ = ±2t,
visualised by the red lines. The four insets illustrate the evolution of
w(k) along the Brillouin zone at the four marked positions in the
phase space, (t/Δ = ±2, μ/Δ = 0.2) in the topological and
(t/Δ = ±2, μ/Δ = 4.2) in the trivial phase. In the phase diagram
for Δ < 0 the ν = +1 and ν = −1 regions are swapped.

The winding number is given by [28, 32]

ν =
1

2π

∫ π/d

−π/d
dk ∂k w(k), (8)

where w(k) = arg [2Δ sin(kd) + i (μ + 2t cos(kd))] and
∂kw(k) is the winding number density. A trivial phase corre-
sponds to ν = 0, a non trivial one to finite integer values of ν.
The winding number relates bulk properties to the existence
of boundary (not necessarily MZM) states in a finite chain.
This property is known as bulk-edge correspondence. Due to
their topological nature, their existence is robust against small
perturbations, like disorder. This point is further discussed in
section 7.

The phase diagram constructed using the winding number
invariant is shown in figure 1. The meaning of two different
values for the winding number is clearer when we recall the
Kitaev Hamiltonian in the Majorana basis. In a finite chain
the leftmost lattice site consists of the A Majorana operator
γA

1 connected to the bulk by the i(Δ− t) hopping and the B
Majorana operatorγB

1 connected by the i(Δ+ t) hopping. With
Δ > 0 and t < 0 (the ν = +1 phase) the Majorana state at the
left end of the chain will consist mostly of the weakly con-
nected γB

1 . If t > 0 (the ν = −1 phase), γA
1 is connected to the

bulk more weakly and contributes most to the left end bound
state.

The boundaries between different topological phases can
be obtained from the condition of closing the bulk gap, i.e.
E±(k) = 0 (cf equation (7)). That is only possible if both terms
under the square root vanish. The condition of Δ �= 0 forces
the gap closing to occur at kd = 0 or k = πd, and the remain-
ing term vanishes at these momenta if μ = ±2t. The four insets
in figure 1 show the behavior of w(k), leading to either a
zero (for w(−π) = w(π)) or non zero winding number, see
equation (8).

3
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Physically speaking, the Kitaev chain is in the topologi-
cal phase provided that Δ �= 0 and the chemical potential lies
inside the ‘normal’ band (|μ| � 2|t|).

3. Spectral analysis of the finite Kitaev chain

One of the characteristics of finite systems is the possibility
to host edge states at their ends. To account for the presence
and the nature of such edge states, we consider a finite Kitaev
chain with N sites and open boundary conditions, yielding N
allowed k values. In this section we shall consider the situation
in which one of the three parametersΔ, t andμ is zero. Already
for the simple case μ = 0 andΔ �= 0, t �= 0 the quantization of
the momentum turns out to be non trivial. The general case in
which all parameters are finite is considered in sections 5–7.

We start with the BdG Hamiltonian of the open Kitaev chain
in real space, expressed in the basis of standard fermionic

operators ψ̂ =
(

d1, . . . , dN , d†
1, . . . , d†

N

)T
. Then

ĤKC =
1
2
ψ̂† HKC ψ, (9)

where the BdG Hamiltonian HKC is

HKC =

[
C S
S† −C

]
. (10)

These matrices have the tridiagonal structure

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ −t
−t −μ −t

−t −μ −t
. . .

. . .
. . .

−t −μ −t
−t −μ −t

−t −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Δ
−Δ 0 Δ

−Δ 0 Δ
. . .

. . .
. . .

−Δ 0 Δ
−Δ 0 Δ

−Δ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The spectrum can be obtained by diagonalisation of HKC in
real space. We consider different situations.

3.1. Δ = 0

The BdG Hamiltonian is block diagonal and its characteristic
polynomial Pλ(HKC) = det [λ 𝟙−HKC] factorises as

Pλ(HKC) = Pλ(C) Pλ(−C). (13)

The tridiagonal structure of C straightforwardly yields the
spectrum of a normal conducting, linear chain [33]

EΔ=0
± (kn) = ± [μ+ 2t cos (knd)] , knd =

nπ
N + 1

, (14)

where n runs from 1 to N. Since kn ∈ R, only bulk states exist
for Δ = 0.

3.2. t = 0

In the beginning we consider both t and μ to be zero and
include μ �= 0 in a second step. The parameter setting leads to
a vanishing matrix C, see equation (11), and the characteristic
polynomial of the system reads:

Pλ(HKC) = det

[
λ 𝟙 −S
S λ 𝟙

]
, (15)

where we used the property S† = −S. Due to the fact that the
commutator [𝟙, S] = 0 vanishes4, one finds [34]

Pλ(HKC) = det
(
λ2 𝟙+ S2

)
. (16)

The characteristic polynomial can still be simplified to the
product

Pλ(HKC) = Pλ(iS) Pλ(−iS). (17)

The matrix iS is hermitian and describes a linear chain with
hopping iΔ. As a consequence, we find the spectrum to be [33]

E±(kn) = ± [2Δ cos (knd)] , knd =
nπ

N + 1
, (18)

where n runs from 1 to N and each eigenvalue is twice degener-
ated. Notice the phase shift by π/2 compared to the spectrum
of an infinite chain equation (7). We discuss this phase shift in
more detail in section 3.3.

Furthermore if, and only if, N is odd, we find two zero
energy modes, namely for n = (N + 1)/2. Their existence for
odd N and the degeneracy is due to the chiral symmetry.

The chemical potentialμ can be included easily. Exploiting
the properties of HKC, we find the characteristic polynomial to
be

Pλ(HKC) = det

[
(λ+ μ) 𝟙 −S

S (λ− μ) 𝟙

]

= det
[(
λ2 − μ2

)
𝟙+ S2

]
= det

[
Λ2 𝟙+ S2

]
, (19)

with Λ2 :=λ2 − μ2. The same treatment as in the previous
μ = 0 case yields Pλ(HKC) = PΛ(iS) PΛ(−iS). Consequently
the spectrum is

Et=0
± (kn) = ±

√
μ2 + 4Δ2 cos2(knd), knd =

nπ
N + 1

, (20)

where n runs again from 1 to N. Again no boundary modes are
found for t = 0.

4 Note that λ can be zero and it will for odd N. Hence, the standard formula
to calculate the determinant of a partitioned 2 × 2 matrix can not be used
here, because it requires the inverse of one diagonal block. We use instead

Silvester’s formula [34]: det

[
A B
C D

]
= det[AD − CB], where A, B, C, D are

square matrices of the same size and the only requirement is [C, D] = 0.

4
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3.3. μ = 0

The calculation of the spectrum for μ = 0 requires a more
technical approach, since the structure of the BdG Hamiltonian
equation (10) prohibits standard methods.

One important feature of the Kitaev chain can be appreci-
ated inspecting equation (3). The entire model is equivalent
to two coupled SSH-like chains [30, 35] containing both the
hopping parameters a := i (Δ− t) and b := i (Δ+ t), see
figure 2. Explicitly,

ĤKC =
1
2

⎛
⎝a

N1∑
j=1

γA
2 j−1γ

B
2 j + b

N2∑
j=1

γB
2 jγ

A
2 j+1

⎞
⎠+ h.c.

+
1
2

⎛
⎝b

N1∑
j=1

γB
2 j−1γ

A
2 j + a

N2∑
j=1

γA
2 jγ

B
2 j+1

⎞
⎠+ h.c.

− iμ
N∑

j=1

γA
j γ

B
j , (21)

where N1,2 depend on N. If N is even we have N1 = N/2 and
N2 = N1 − 1, while N1 = N2 = (N − 1)/2 for odd N. Indepen-
dent of the number of atoms, the first and the second lines in
equation (21) describe two SSH-like chains, coupled by the
chemical potential μ. We define here the SSH-like basis of
the Kitaev chain as:

Ψ̂even
SSH =

(
γA

1 , γB
2 , . . . , γA

N−1, γB
N |γB

1 , γA
2 , . . . , γB

N−1, γA
N

)T
,

Ψ̂odd
SSH =

(
γA

1 , γB
2 , . . . , γB

N−1, γA
N |γB

1 , γA
2 , . . . , γA

N−1, γB
N

)T
,

(22)

where ‘|’ marks the boundary between both chains. We call
the first one, starting always with γA

1 , the α chain, and the

second the β chain, such that Ψeven,odd
SSH =

(
�γα |�γβ

)T
. The BdG

Hamiltonian in the SSH-like basis reads

HSSH
KC =

[
Hα τ

τ † Hβ

]
, (23)

with ĤKC = 1
2Ψ̂

†
SSHHSSH

KC Ψ̂SSH. The independent SSH-like
chains are represented by the square matrices Hα and Hβ of
size N. Both chains are coupled by the matrices τ and τ †,
which contain only the chemical potential μ, in a diagonal
arrangement specified below.

The pattern of these matrices is slightly different for even
and odd number of sites. If N is even we find

Heven
α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
−a 0 b

−b 0 a
. . .

. . .
. . .

−a 0 b
−b 0 a

−a 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

Figure 2. Kitaev chain viewed as two coupled SSH-like chains for
(a) N = 4 and (b) N = 3 sites. These two chains α and β are coupled
by ±iμ. The hoppings a = i(Δ− t) in red and b = i(Δ+ t) in blue
alternate (dashed lines correspond to −a and −b) and connect
neighbouring Majorana operators γA

j (blue spheres) and γB
j±1

(orange spheres). The unit cell has size 2d .

Heven
β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b
−b 0 a

−a 0 b
. . .

. . .
. . .

−b 0 a
−a 0 b

−b 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

and τ even = −iμ𝟙N/2 ⊗ τz, where τ z denotes the Pauli matrix.
The odd N expressions are achieved by removing the last line
and column in Heven

α , Heven
β and τ even.

As shown in more detail in appendix B, for μ = 0 the char-
acteristic polynomial can be expressed as the product of two
polynomials of order N

Pλ(HKC)μ=0 = ζN(λ, a, b) εN(λ, a, b), (26)

where the product form reflects the fact that the Kitaev chain is
given in terms of two uncoupled SSH-like chains, as illustrated
in figure 2. Even though the polynomials ζN and εN belong
to different SSH-like chains, both obey a common recursion
formula typical of Fibonacci polynomials [36–38]

ζ j+2 =
[
λ2 + a2 + b2

]
ζ j − a2b2 ζ j−2, (27)

and differ only in their initial values⎛
⎜⎜⎝
ζ−1

ζ0

ζ1

ζ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1
λ

λ2 + b2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
ε−1

ε0

ε1

ε2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1
λ

λ2 + a2

⎞
⎟⎟⎠ . (28)

Fundamental properties of Fibonacci polynomials are summa-
rized in appendix A. The common sublattice structure of both
chains sets the stage for a relationship between ζ j and εj: the

5
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exchange of a’s and b’s enables us to pass from one to the
other

ζ j(λ, a, b) = ε j(λ, b, a), ∀ j. (29)

Moreover, equation (27) implies that a Kitaev chain with even
number of sites N is fundamentally different from the one with
an odd number of sites. This property is a known feature of
SSH chains [39]. The difference emerges since, according to
equations (B20), (B22), it holds

ζodd(λ, a, b) = εodd(λ, a, b), (30)

because the number of a and b type bondings in both subchains
is the same. This leads to twice degenerate eigenvalues. An
equivalent relationship for even N does not exist. The closed
form for ζ j and εj, as well as their factorization, is derived in
appendix B.

The characteristic polynomial can be used to obtain the
determinant of the Kitaev chain, here for μ = 0, because
evaluating it at λ = 0 leads to:

Pλ=0(HKC)μ=0 = det (HKC)μ=0.

According to equation (26) we need only to know ζN and εN at
λ = 0. The closed form expression for ζ j at λ = 0 reduces to

ζ j|λ=0 =

{
0, if j is odd
b j, else

, (31)

while εj|λ=0. follows from equation (29). We find that there are
always zero energy eigenvalues for odd N, but not in general
for even N, as it follows from

det
(
Hμ=0

KC

)
=

{
0, N odd[

Δ2 − t2
]N

, N even
. (32)

Additional features of the spectrum are discussed in the fol-
lowing.

3.3.1. Odd N. The spectrum for odd N is given by two con-
tributions

Eμ=0
± = 0, (twofold) (33)

Eμ=0
± (kn) = ±

√
4Δ2 sin2(knd) + 4t2 cos2(knd), (34)

where knd = nπ/(N + 1) and n runs from 1 to N, except for
n = (N + 1)/2. This constraint on n is a consequence of the
equations (67), (69) below which show that the boundary con-
dition equation (70) cannot be satisfied for kd = π/2. Hence,
no standing wave can be formed.

Each zero eigenvalue belongs to one chain. As discussed
below, two decaying states are associated to equation (33),
whose wave functions are discussed in section 4.2. These
states are MZM.

3.3.2. Even N. In the situation of even N we find for the
Kitaev’s bulk spectrum at zero μ

Eμ=0
± (k) = ±

√
4Δ2 sin2(kd) + 4t2 cos2(kd), (35)

Figure 3. Eigenvalues and the non equidistant quantization of the
bulk momentum k for a Kitaev molecule with four sites. (a) The
horizontal lines mark the numerical eigenvalues ±Ej ( j = 0, 1, 2, 3)
and the bulk spectrum of the infinite chain is the green solid curve.
The tangent-like functions follow fβ(k) and fα(k) from equation (36).
The zeros of fβ,α(k) define the proper wave vectors k3,2,1 of the finite
system and these cut the dispersion relation at the correct positions,
such that E±(kj) = ±Ej. (b) Zoom of (a) for k ∈

[
0.5/d, 1.2/d

]
. The

chosen parameters N = 4, t = 4 meV, Δ = 1.5 meV and μ = 0 meV
lead to the bulk eigenvalues ±E j ∈ [±4.39, ±6.47, ±6.89] (in meV)
and to the momenta k3,2,1 approximately [0.58012/d , 0.68813/d ,
1.12386/d].

where the momenta k are in general not equidistant in the first
Brillouin zone. Rather, the bulk quantization condition follows
from the interplay between Δ and t and is captured in form of
the functions fβ,α(k) (cf appendix B.2),

fβ,α(k) := tan [kd (N + 1)] ± Δ

t
tan (kd) , (36)

whose zeros
fβ,α(k)

!
= 0, kd �= 0, π/2 (37)

define the allowed values of k. Note that kd = 0, π/2 are
excluded as solutions, due to their trivial character. The func-
tions fβ,α(k) follow from the factorisation of the polynomials
εN and ζN. The negative sign in equation (36) belongs to the α
subchain, while the positive one to the β subchain. The spec-
trum following from equation (37) is illustrated in figure 3.
We observe that equations (35) and (37) hold for all values of
t and Δ, independent of whether |Δ| is larger or smaller than
|t|. The two situations are connected by a phase shift of the
momentum kd → kd + π/2, which influences both the spec-
trum and the quantization condition. In the end all different
ratios of Δ and t are captured by equations (35) and (37), due
to the periodicity of the spectrum.

However, when we consider decaying or edge states this
periodicity is lost (see equations (40) and (41) below) and |t| ≶
|Δ| lead to different quantization rules. The hermiticity of the
Hamiltonian allows a pure imaginary momentum for μ = 0,
but a simple exchange of k to iq in equation (36) does not lead
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to the correct results. We introduce here the functions

hβ,α(q) := tanh [qd (N + 1)] ± m tanh (qd) , (38)

similar to fβ,α(k) in equation (36), where m contains both ratios
of Δ and t:

m :=

⎧⎪⎨
⎪⎩
Δ

t
, if |Δ| � |t|

t
Δ

, if |t| � |Δ|
. (39)

Again, the positive sign in equation (38) belongs to the β chain
and the negative one to the α chain. The exact quantization
criterion is provided by the zeros of hβ,α(q),

hβ,α(q)
!
= 0, q �= 0, (40)

as illustrated in figure 4. The associated energies follow from
the dispersion relation

E(q) = ±

⎧⎨
⎩
√

4t2 cosh2(qd) − 4Δ2 sinh2(qd), if |Δ| � |t|√
4Δ2 cosh2(qd) − 4t2 sinh2(qd), if |t| � |Δ|

.

(41)
We notice that equation (41) is only well defined for zero or
positive arguments of the square root. Indeed, all solutions of
equation (40), if existent, lie always inside this range, because
using hβ,α(q) = 0 in equation (41) yields

E(q) = ± 2
cosh(qd)

cosh [qd (N + 1)]
· min {|Δ|, |t|} . (42)

Hence, each wavevector from equation (40) corresponds to
two gap modes, since the gap width is 4 min {|Δ|, |t|} and
the fraction inside equation (42) is always smaller than one.
We can restrict ourselves to find only positive solutions qd,
due to the time reversal symmetry. The number of physi-
cally different solutions of equation (40) is zero or two and
it follows always from the equation containing the positive
factor m or −m. Consequently, according to equation (38),
only none or two gap modes can form and both belong to the
same subchain, α or β. Moreover a solution exists if, and only
if, |m| ∈ [1, N + 1].

In the limiting case when |m| → 1, i.e. at the Kitaev points,
the solution qd →∞ and the associated energies E± from
equation (42) go to zero. The eigenstate will be a Majorana
zero energy mode, see section 4.1.

In the second special case of |m| → N + 1 the solution
approaches zero. The value q = 0 is only in this particular sce-
nario a proper momentum, see appendix B.2. The momentum
q = 0 yields the energies E±(0) = ±2 min{|Δ|, |t|}, which
mark exactly the gap boundaries.

Increasing the value of |m| beyond N + 1 entails the
absence of imaginary solutions. The number of eigenvalues
of a Kitaev chain is still 2N for a fixed number of sites and
consequently equation (37) leads now to N real values for
kd , instead of N − 1. In other words, the two former gap
modes have moved to two extended states and their energy lies
now within the bulk region of the spectrum, even though the
system is still fully gaped. This effect holds for the Kitaev
chain as well as for SSH chains. Physically this means, that

Figure 4. Eigenvalues and the quantised momentum q0 of the gap
modes for a Kitaev molecule with four sites. (a) The horizontal lines
characterise the numerical eigenvalues ±Ej ( j = 0, 1, 2, 3) and the
dispersion relation inside the gap (the red ellipse) is shown as
function of continuous q on a finite range. Only one of both
hyperbolic tangent-like functions hβ(q) or hα(q) defines a proper
qd �= 0. (b) Zoom of (a) for q ∈

[
0.3/d, 0.42/d

]
. The momenta

±q0, the zeros of hα, lead to the correct associated energies, such
that E±(q0) = ±E0. The chosen parameters N = 4, t = 4 meV,
Δ = 1.5 meV and μ = 0 meV lead to the eigenvalues
E j,± ∈ [±0.97, ±4.39, ±6.47, ±6.89] (in meV) and to the
momentum q0 ≈ 0.374 16/d .

a ‘boundary’ mode with imaginary momentum q and corre-
sponding decay length ξ ∝ 1/q reached the highest possible
delocalisation in the chain.

The limit of N →∞ yields always two zero energy bound-
ary modes; since the momentum is qd = arctanh(|1/m|), due
to equations (38), (40) and according to equation (42) the
energy goes to zero. If we consider the odd N situation in the
limit of an infinite number of sites, we have there two zero
energy boundary modes as well. The results of this section are
summarized in table 1.

4. Eigenvectors (μ = 0)

We use the SSH-like basis to calculate the eigenvectors of
the Hamiltonian equation (23) at μ = 0. The eigenvectors �ψ
are defined with respect to the SSH-like chains α and β, see
equation (23),

�ψ =

(
�vα
�vβ

)
, (43)

with the feature that always either �vβ or �vα can be chosen to
be zero, yielding the solutions �ψα and �ψβ , respectively

�ψα =

(
�vα
�0

)
, �ψβ =

(
�0
�vβ

)
. (44)

We are left to find the eigenvectors of a single tridiagonal
matrix which we did basing on, and extending the results of
[40]. We focus here on the edge and decaying states, while
the rest of our results is in appendix C. Remember that in the
SSH-like basis equation (22) the Majorana operators γA

j and

7
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Table 1. Overview of the quantization rule for the wave vectors of the finite Kitaev chain in different scenarios. The wavevectors k, kn, κ1,2
used together with equation (7) and q with equation (41) yield the correct finite system energies and k, kn, q ∈ R, κ1,2 ∈ C.
Notice: n = 1, . . . , N and m = t

Δ
(m = Δ

t ) for |t| � |Δ| (|Δ| > |t|).

Equation for
eigenstate Majorana

Requirements Quantisation rule Zero modes elements character

Δ = 0: knd = nπ
N+1 Yes, if for some n: No

μ = μn = 2t cos
(

nπ
N+1

)

t = 0: knd = π
2 + nπ

N+1 No No

μ = 0, N odd: knd = nπ
N+1 , n �= N+1

2 No (67)–(69) No
qd = arctanh

(
1/|m|

)
Yes (71), (72) Yes

(75)–(78) Yes
μ = 0, N even: tan [kd (N + 1)] = ∓Δ

t tan (kd) No (51), (52) No
tanh [qd (N + 1)] = ∓m tanh (qd) Only if Δ = ±t (61)–(64) Yes

Otherwise (51), (52) No

t, Δ, μ ∈ R sin2
[
κ1+κ2

2 (N+1)
]

sin2
[
κ1−κ2

2 (N+1)
] =

1+
(
Δ
t

)2
cot2

(
κ1−κ2

2

)

1+
(
Δ
t

)2
cot2

(
κ1+κ2

2

) only for μ = μn ∈ R and (100), (102) No

μn = 2
√

t2 −Δ2 cos
(

nπ
N+1

)
(109), (110) Yes

(112), (113) Yes

γB
j , alternate at each site, thus defining two interpenetrating

‘A’ and ‘B’ type sublattices.

4.1. Even N

We define the vectors �vα and �vβ via the entries

�vα =
(
x1, y1, x2, y2, . . . , xN/2, yN/2

)T
, (45)

�vβ =
(
X1, Y1, X2, Y2, . . . , XN/2, YN/2

)T
, (46)

where x, y and X , Y are associated to the A and B sublattices,
respectively. The internal structure of �vα (�vβ) reflects the unit
cell of an SSH-like chain and thus simplifies the calculation.
In the real space xl (Xl) belongs to site j = 2l − 1 and yl (Yl)
to j = 2l, where j = 1, . . . , N.

Searching for solutions on the subchain α implies setting
�vβ = �0 and solving

(
Heven

α − E±𝟙N

)
�vα = �0. The elements of

�vα obey

a y1 = E± x1, (47)

−a xN/2 = E± yN/2, (48)

and

b xl+1 − a xl = E± yl, (49)

a yl+1 − b yl = E± xl+1, (50)

where l runs from 1 to N/2 − 1. The solution for Δ �= ±t is
(in agreement with [40])

yl

x1
=

E±(θ)
a

Te
l (θ), (51)

xl

x1
= Te

l (θ) − b
a

Te
l−1(θ), (52)

where l = 1, . . . , N/2, θ/(2d) denotes the momentum k (q) for
extended (gap) states and E± is the dispersion relation associ-
ated to k (equation (35)), or q (equation (41)). The entries of

the eigenvectors are essentially sine functions for the extended
states

Te
l (k) :=

sin(2 kd l)
sin(2 kd)

, (53)

and hyperbolic sine functions for the decaying states

Te
l (q) := sl−1 sinh(2 qd l)

sinh(2 qd)
, (54)

where the prefactor s depends on the ratio of Δ and t:

s =

{
+1, |Δ| > |t|
−1, |t| > |Δ|.

An illustration of �ψα is given in figure 5. The allowed momenta
k or q follow from the open boundary conditions

y0 = x N
2 +1 = 0. (55)

The first condition is satisfied due to T0(θ) = 0 for any
momentum. The second condition yields the quantization rules
fα(k) = 0 and hα(q) = 0 for theα chain, see equations (37) and
(40).

The eigenvector �ψβ entails �vα = 0 and the entries of �vβ fol-
low essentially by replacing a’s and b’s in the equations (51)
and (52). We find

Yl

X1
=

E±
b

Te
l (θ), (56)

Xl

X1
= Te

l (θ) − a
b

Te
l−1(θ), (57)

where j = 1, . . . , N/2 andΔ �= ±t. The quantisation condition
follows from the open boundary condition:

Y0 = 0, X N
2 +1 = 0,

and k (q) obey fβ(k) = 0 (hβ(q) = 0). Further, from the quan-
tization rules it follows that gap modes belong always to the
same subchain α or β for even N.

8
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Figure 5. Visualisation of the entries of the eigenstates �ψα
q,k( j) of the

Kitaev chain with N = 42 sites and μ = 0. Panel (a) depicts the gap
state �ψα

q and (b) the lowest energy bulk state �ψα
k . The blue (orange)

dots follow xl/x1 (iyl/x1) at position j = 2l − 1 ( j = 2l) for
l = 1, . . . , N/2, while the black line is only a guide to the eye. The
gap state is more localised at the edges. The extended state is largest
inside the chain. The chosen parameters are t = 10 meV and
Δ = 1 meV leading to q = 0.100 29/d and E = 0.0539 meV for the
gap state. The shown extended state is associated with k = 1.4806/d
and E = 2.6851 meV. Notice the decaying state in a) as well as the
ones depicted in figures 6(a) and 7 are not Majorana states.

As illustrated in figures 5–7 our states are symmetric w.r.t.
the center of the SSH-like chains. This symmetry is visible
in alternative versions of the equations (52) and (57) (l =
1, . . . , N/2), whereby x N

2 +1−l = Te
l (θ) x N

2
, which holds for all

eigenstates. Together with equations (51), we find in general

x N
2 +1−l = yl

xN/2

y1
(58)

and similarlyX N
2 +1−l = Yl X N

2
/Y1. Recalling the definition of

the SSH-like basis, equation (22), and introducing the opera-
tors ψ†

α,β associated to the states �ψα,β in equation (44), we find
the expression

ψ†
α =

1
vα

⎡
⎣N/2∑

j=1

x j

(
γA

2 j−1

)†
+

N/2∑
j=1

y j

(
γB

2 j

)†⎤⎦ , (59)

where vα is the norm of the vector �vα. A similar term is
found for ψ†

β . We notice that equations (59) and (60) below
are true for all kinds of eigenstates, i.e. extended, decaying
states and MZM, of the BdG Hamiltonian in equation (23) at
μ = 0. The character (statistics) of the operators depends on
whether (ψ†

α,β)2 is 0 or 1/2. The property {γr
j , γ

s
k} = δ j,kδr,s

with (r, s ∈ {A, B}) yields

(
ψ†
α

)2
=

1
2 v2

α

N/2∑
j=1

(
x2

j + y2
j

)
. (60)

The symmetry in equations (58) states that (ψ†
α)2 is essentially

determined by (xN/2/y1)2. For a �= 0 and consequently E �= 0,
we find from equations (47), (48) and (58) that (xN/2/y1)2 =

Figure 6. Illustration of the entries of the eigenstates �ψα
q,k( j) of a

Kitaev chain for N = 42 sites and μ = 0 for t = 5 meV and
Δ = 1 meV. Similar to figure 5, but with a modified value for t/Δ.
(a) Shows the gap mode and (b) the lowest in energy bulk mode.
Notice that for the chosen parameter set the gap state is more
localized than the one in figure 5. In contrast the extended state has
lower weight at the ends of the chain. The gap mode (bulk state) is
associated with q = 0.2027/d (k = 1.4886/d) and
E = 0.6682 × 10−3 meV (E = 2.1555 meV).

−1, which yields (ψ†
α)2 = 0. Thus the operators associated

to the finite energy states �ψα, including the ones depicted in
figures 5(a) and 6(a), obey fermionic statistics. This result
holds also true in the case a = 0 and E �= 0 as can be seen
by using the corresponding eigenstates (appendix C). Similar
results hold for (ψ†

β)2.
We turn now to Majorana zero modes, which at μ = 0 only

exist at the Kitaev points Δ = ±t, see equation (32).

WhenΔ = t we find two zero energy modes �ψα
A =

(
�vα,A
�0

)
,

�ψα
B =

(
�vα,B
�0

)
each localised at one end of the α chain:

�vα,A = (1, 0, 0, . . . , 0)T, (61)

�vα,B = (0, 0, . . . , 0, 1)T, (62)

and (ψ†
α)2 = 1/2 in equation (60). In contrast, both zero energy

modes are on the β chain for Δ = −t. We find �ψβ
A =

(
�0

�vβ,A

)
,

�ψβ
B =

(
�0

�vβ,B

)
with

�vβ, B = (1, 0, 0, . . . , 0)T, (63)

�vβ, A = (0, 0, . . . , 0, 1)T. (64)

These states are the archetypal Majorana zero modes [1, 2].
Due to their degeneracy, these modes can be recombined into
fermionic quasiparticles by appropriate linear combination,
see in equations (4a) and (4b) from section 2.1.
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Figure 7. The decaying state �ψβ
q for N = 42 sites and μ = 0. The

black guiding line follows the orange (blue) dots, which correspond
to Xl/X1 (iYl/X1) at position j = 2l − 1 ( j = 2l), l = 1, . . . , N/2.
The difference to the edge states on subchain α is the exchanged
role of Majorana operators γA

j , γB
j . The chosen parameters are

t = −5 meV and Δ = 1 meV. The gap mode is associated with
q = 0.2027/d and E = 0.6682 × 10−3 meV.

4.2. Odd N

The composition of the eigenvectors slightly changes for the
odd case compared to the even N case

�vα =
(

x1, y1, x2, y2, . . . , x N−1
2

, y N−1
2

, x N+1
2

)T
, (65)

�vβ =
(
X1, Y1, X2, Y2, . . . , X N−1

2
, YN−1

2
, X N+1

2

)T
.

(66)

Although both odd sized chains share the same spectrum, it is
possible to find a linear combination of states which belongs
to one chain only. The form of the extended states of the odd
chains (Δ �= ±t and E± �= 0) does not differ much from the
one of the even chain and the entries of �vα are

yl

x1
=

E±(kn)
a

To
l (kn), (67)

xl

x1
= To

l (kn) − b
a

To
l−1(kn), (68)

where To
l is

To
l (kn) :=

sin(2 knd l)
sin(2 knd)

, (69)

with knd = nπ/(N + 1) (n = 1, . . . , N, n �= (N + 1)/2). The
exchange of a’s and b’s leads again to the coefficients for the
chain β (see appendix C).

The significant difference between even and odd N lies
in the realization of the open boundary condition. Solving(
Hodd

α − E±𝟙N

)
�vα = �0 yields now

y0 = 0, y N+1
2

= 0, (70)

which leads to the momenta kn.
An SSH-like chain with an odd number of sites hosts only

a single zero energy mode, but α and β contribute each with
one. We find on subchain α for Δ �= ±t

yl = 0, xl =

(
Δ− t
Δ+ t

)l−1

x1, (71)

and on subchain β

Yl = 0, Xl =

(
Δ+ t
Δ− t

)l−1

X1, (72)

where l runs from 1 to (N + 1)/2.
Regarding the statistics of the operators ψ†

α, ψ†
β associated

to the states �ψα, �ψβ , we proceed like for the even N case. The
use of the SSH-like basis from equation (22) and the entries of
the state �ψα yield now

ψ†
α =

1
vα

⎡
⎣

N+1
2∑

j=1

x j

(
γA

2 j−1

)†
+

N−1
2∑

j=1

y j

(
γB

2 j

)†⎤⎦ .
Again, the equations (67), (68) and (70) imply a perfect com-
pensation of the A and B sublattice contributions, yielding
(ψ†

α)2 = 0 for E �= 0. The zero energy mode, given by its
entries in equation (71), leads to (ψ†

α)2 = 1/2.
Further, we find that both zero energy modes �ψα,β have their

maximum at opposite ends of the Kitaev chain and decay into
the chain. To better visualize this it is convenient to introduce
the decay length

ξ = 2d

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣ln
(

t −Δ

t +Δ

)∣∣∣∣
−1

|t| � |Δ|,∣∣∣∣ln
(
Δ− t
Δ+ t

)∣∣∣∣
−1

|t| � |Δ|,
(73)

and remembering that the atomic site index of xl is j = 2l − 1
equation (71) yields for |t| � |Δ|

xl = x1 (−1)l−1 e−2(l−1)d/ξ,

= x1 (−1)l−1 e−( j−1)d/ξ. (74)

For |t| � |Δ| the xl coefficients are given by the same equation
without the (−1)l−1 factor. We have moreover q = ±1/ξ,
where q is the imaginary momentum yielding E = 0 in
equation (41). Thus the localisation of these states is deter-
mined only by t and Δ. In the parameter setting of Δ = t we
find:

�vα,A = (1, 0, 0, . . . , 0)T, (75)

�vβ,B = (0, 0, . . . , 0, 1)T, (76)

while both states exchange their position for Δ = −t

�vα,B = (1, 0, 0, . . . , 0)T, (77)

�vβ,A = (0, 0, . . . , 0, 1)T. (78)

4.3. The particle–hole-operator

In the last section we have shown that some of the zero energy
eigenstates of the BdG Hamiltonian of the finite Kitaev chain
are Majorana zero modes (MZM) by exploiting the statistics
of the corresponding operators ψα,β . We further corroborate
this statement now by recalling that an MZM is defined as an
eigenstate of the Hamiltonian H and of the particle hole sym-
metry P . The latter acts on an eigenstate �ψα,β of energy E
by turning it into an eigenstate of H of energy −E. Thus, the
energy of such an exotic state has to be zero, since eigenstates
associated to different energies are orthogonal.
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The three symmetries, time reversal, chiral and the particle–
hole symmetry, discussed in section 2.3, can be constructed in
real space too. Of particular interest is their representation in
the SSH-like basis. The antiunitary particle–hole symmetry is

P = K 𝟙. (79)

The time reversal and the chiral symmetry depend on N. If N
is even we find

C even =

[
𝟙N/2 ⊗ τz

−𝟙N/2 ⊗ τz

]
, (80)

T even =

[
𝟙N/2 ⊗ τz

−𝟙N/2 ⊗ τz

]
K. (81)

The expressions for odd N follow by removing the last line and
last column in each diagonal block.

The effect of P from equation (79) can be seen explicitly if
one considers P �ψα. For N even and Δ �= t the elements xl, yl

of �ψα are given in equations (51) and (52). Here yl/x1 is pure
imaginary and xl/x1 is real. Hence, �ψα is not an eigenstate of
P since the prefactor to yl is finite, i.e., E± �= 0. We conclude
that in a finite Kitaev chain with even number of sites Majo-
rana zero modes emerge only at the Kitaev points for μ = 0,
since the states in equations (61)–(64) are eigenstates of P
as well. In the situation of odd N and μ = 0, the eigenstates
given by their elements in equations (71), (72) are Majorana
zero energy modes for an appropriate choice of x1. These
states can be delocalised over the entire chain, depending on
their decay length ξ, while the case of full localisation is only
reached at the the Kitaev points, where the MZM turn into the
states given by equations (75)–(78).

5. Results for the spectrum and eigenstates at
finite μ

5.1. Spectrum

The last missing situation is to consider a finite chemical
potential μ. For this purpose we use the so called chiral basis
Ψ̂c :=

(
γA

1 , γA
2 , . . . , γA

N , γB
1 , γB

2 , . . . , γB
N

)T
. The Kitaev Hamil-

tonian transforms via ĤKC = 1
2 Ψ̂

†
c Hc Ψ̂c, into a block off-

diagonal matrix

Hc =

[
0N×N h

h† 0N×N

]
, (82)

because there are no γA
j γ

A
i (γB

j γ
B
i ) contributions in

equation (21). The N × N matrix h is tridiagonal

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−iμ a
−b −iμ a

−b −iμ a
. . .

. . .
. . .

−b −iμ a
−b −iμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (83)

Figure 8. Existence of zero energy solutions for growing system
sizes. The red lines mark the boundaries of the topological phase
diagram. Zero energy solutions correspond to the blue curves, along
which the determinant of the Kitaev Hamiltonian vanishes as a
function of μ, t and Δ. (a) The shown situation is for a small even N,
yielding a zero determinant on the horizontal axis only at the Kitaev
points t/Δ = ±1. Each blue curve departs from one of these two
points. (b) The situation of small odd N is similar to the even one,
but the entire μ = 0-axis is now included. (c) The solutions μn

become dense for larger even N, and one sees already the filling of
the non trivial phase for N →∞. (d) Large even N behave similar to
large odd N, but the latter still include the entire horizontal axis.

since the Kitaev Hamiltonian contains only nearest neighbour
hoppings. Then the characteristic polynomial is [34]

Pλ (Hc) = det
(
λ2 𝟙N − h h†) , (84)

where, however, h and h† do not commute except for t = 0 or
Δ = 0. Thus, such matrices cannot be diagonalised simultane-
ously. Nevertheless the eigenvalues ηj (η∗j ) of h (h†) are easily
derived e.g. following [33]. We find

η j = −iμ+ 2
√
Δ2 − t2 cos

(
jπ

N + 1

)
, j = 1, . . . , N,

(85)
independent of whether Δ � t or t > Δ.

5.1.1. Condition for zero energy modes. Equation (85) imme-
diately yields the criterion for hosting zero energy modes.
According to equation (82), we have

det(Hc) = det(h) det(h†) = | det(h)|2, (86)

and we need only to focus on det(h).
If a single eigenvalue ηj of h is zero then det(h) vanishes.

Thus, for a zero energy mode the chemical potential must
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satisfy

μn = 2
√

t2 −Δ2 cos

(
nπ

N + 1

)
, n = 1, . . . , N. (87)

Obviously, equation (87) cannot be satisfied for generic val-
ues of t2 −Δ2, because all other quantities are real. The
only possibility is t2 � Δ2. There is only one exception for
odd N, because the value n = (N + 1)/2 leads to μ = 0 in
equation (87) for all values of t and Δ, in agreement with our
results of section 3. This result is exact and confirms findings
from [21, 22]; further it improves a similar but approximate
condition on the chemical potential discussed by Zvyagin in
[23].

An illustration of these discrete solutions μn, which we dub
‘Majorana lines’, is shown in figure 8. All paths contain the
Kitaev points at μ = 0 and t = ±Δ. Further, their density is
larger close to the boundary of the topological phase, as a result
of the slow changes of the cosine function around 0 and π.

For growing number of sites N, the density of solutions
increases. In the limit N →∞, θn = nπ/N + 1 takes all val-

ues in [0,π] and the entire area between μ = ±2
√

t2 −Δ2

for t2 � Δ2 is now occupied with zero energy modes.
Regarding the remaining part of the topological region, we

are going to show in the next section that in that parameter
space only boundary modes with finite energy exist. Because
the energy of these modes is decreasing exponentially with
the system size, in the thermodynamic limit their energy
approaches zero and the full topological region supports zero
energy modes.

5.1.2. The complete spectrum of the finite Kitaev chain. To
proceed we transform equation (84) into an eigenvector
problem for hh†,

hh†�v = λ2�v, (88)

where we defined �v = (ξ1, ξ2, . . . , ξN)T. Notice that we are not
really interested in the eigenvector �v here; we simply use its
entries as dummy variables to release a structure hidden in the
product of h and h†. The elements of h,

hn,m = −iμ δn,m + a δn,m+1 − b δn+1,m,

where n, m = 1, . . . , N, allow us to calculate the product hh†

entry wise(
hh†)

n,m
= δn,m

[
μ2 − a2

(
1 − δn,N

)
− b2

(
1 − δn,1

)]
+ iμ (a − b)

[
δn,m+1 + δn+1,m

]
+ ab

(
δn,m+2 + δn+2,m

)
.

Thus, importantly, equation (88) reveals a recursion formula

ξ j+2 =
λ2 + a2 + b2 − μ2

ab
ξ j − ξ j−2 − iμ

(
a − b

ab

)

×
(
ξ j+1 + ξ j−1

)
, (89)

for the components of �v. The entries ξ are a generalisation of
the Fibonacci polynomials ζ j from equation (27), to which they
reduce for μ = 0, and may be called Tetranacci polynomials

[41, 42]. Further, we find the open boundary conditions from
equation (88) to be

ξ0 = ξN+1 = b ξN+2 − a ξN = b ξ1 − a ξ−1 = 0, (90)

where we used equation (89) for simplifications.
Appendix D contains the description of how to deal

with those polynomials, the boundary conditions and further
the connection of equation (89) to Kitaev’s bulk spectrum
λ = E±(k) in equation (7). Essentially one has to use simi-
lar techniques as it was done for the Fibonacci polynomials,
where now the power law ansatz ξj ∝ rj leads to a character-
istic equation for r of order four. Thus, we find in total four
linearly independent fundamental solutions r±1,±2, which can
be expressed in terms of two complex wavevectors denoted by
κ1,2 through the equality

r± j = e±iκ j , j = 1, 2. (91)

These wavevectors are not independent, but coupled via

cos(κ1) + cos(κ2) = − μt

t2 −Δ2 , ∀ t, Δ, μ ∈ R. (92)

For μ = 0 we can recover from equation (92) our previous
results, whereby one has only pure real (k) or pure imaginary
(iq) wavevectors5. Further, equations (7) and (92) yield

E±(κ1) = E±(κ2).

The linearity of the recursion formula equation (89) states that
the superposition of all four fundamental solutions is the gen-
eral form of ξj. Since the boundary conditions translate into a
homogeneous system of four coupled equations and a trivial
solution for ξj has to be avoided, we find that the determinant
of the matrix describing these equations has to be zero. After
some algebraic manipulations, this procedure leads finally to
the full quantization rule of the Kitaev chain

F(κ1,κ2) = F(κ1,−κ2), (93)

where we introduced the function F(κ1,κ2) as

F(κ1,κ2) = sin2

[
κ1 + κ2

2
(N + 1)

]

×
[

1 +

(
Δ

t

)2

cot2
(
κ1 + κ2

2

)]
. (94)

Similar quantization conditions are known for an open X–Y
spin chain in transverse field [26]. Notice that the quanti-
zation rule is symmetric with respect to κ1,2. Table 1 gives
an overview of the quantization rules for different parameter
settings (Δ, t, μ). The bulk eigenvalues of a finite Kitaev chain
with four sites and μ �= 0 are shown in figure 9.

5 In fact μ = 0 supports complex wavevectors too, but their real part has to be
zero or μ/2, i.e. one has to use iq or π

2 + iq.

12



J. Phys.: Condens. Matter 32 (2020) 445502 N Leumer et al

Figure 9. Spectrum of the Kitaev molecule with four sites and
μ �= 0. The green line follows the excitation spectrum from
equation (7) and the horizontal lines are the numerical eigenvalues
of the Kitaev chain. The momenta k3,2,1 are the proper wavevectors
for μ �= 0 calculated from the full quantization rule, see
equations (92)–(94). The dashed, light gray lines represent the
wavevectors taken from the μ = 0 case to highlight the difference.
The chemical potential μ is obviously changing the quantization of a
finite chain. The chosen parameters are t = 4 meV, Δ = 1.5 meV
and μ = 3 meV and lead to the numerical energies
[0.43, 4.034, 6.068, 9.603] (in meV). The value of k3,2,1d is
approximately [0.6360, 1.2753, 1.6086].

The previous relations open another route to finding the
condition leading to modes with exact zero energy. A conve-
nient form of equation (92) is

cos

(
κ1 + κ2

2

)
cos

(
κ1 − κ2

2

)
= −1

2
μt

t2 −Δ2 , (95)

and the dispersion relation can be transformed into

E2 =
1

cos2
(
κ1±κ2

2

) [4(t2 −Δ2)cos2

(
κ1 ± κ2

2

)
− μ2

]

×
[

t2

t2 −Δ2 − cos2

(
κ1 ± κ2

2

)]
. (96)

Both combinations κ1 ± κ2 yield the same energy, due to
equation (95). If one of the brackets in equation (96) van-
ishes forκ1 + κ2 (κ1 − κ2), the second one does so forκ1 − κ2

(κ1 + κ2) too. Hence, zero energy is achieved exactly if

1 +

(
Δ

t

)2

cot2
(
κ1 ± κ2

2

)
= 0. (97)

This puts restrictions onΔ, t,μ. Together with the quantization
rule in equation (93), this ultimately leads to (87) and to the

condition 2
√

t2 −Δ2 < |μ| < 2|t|, defining the region where
exact zero modes can form.

Regarding the remaining part of the topological phase dia-
gram, we find that in the limit N →∞ the difference between
even and odd N vanishes and the part of theμ = 0 axis between
t = −Δ and t = Δ for even N leads to zero energy states too, in
virtue of equation (42). Analogously, the area around the ori-

gin in figure 8, defined by 2
√

t2 −Δ2 < |μ| and μ < 2|t| with
μ �= 0 does not support zero energy modes for all finite N.
Instead, this area contains solutions with exponentially small
energies, see equation (96), which become zero exclusively
in the limit N →∞. The wavevectors obey κ1 = iq1, κ2 =

π + iq2 with real q1,2 for Δ2 > t2, and κ1 = iq1, κ2 = iq2 oth-
erwise, which follows from equation (93) after some manipu-
lations; see also [26]. Thus, the entire non trivial phase hosts
zero energy solutions for N →∞.

5.2. Eigenstates

The calculation of an arbitrary wave function of the Kitaev
Hamiltonian without any restriction on t, Δ, μ is performed
at best in the chiral basis yielding the block off-diagonal struc-
ture in equation (82). A suitable starting point is to consider a
vector �w in the following form

�w =

(
�v
�u

)

with�v = (ξ1, . . . , ξN),�u = (σ1, . . . , σN). Solving for an eigen-
state with eigenvalue λ demands on �v, �u

h�u = λ�v, (98)

h† �v = λ�u, (99)

with h from equation (83). Thus, h h†�v = λ2 �v, and we recover
equation (88) and the entries of �v obey equation (89) again. In
appendix E we derived the closed formula for ξj, namely

ξ j =

1∑
i=−2

ξi Xi( j), j ∈ Z (100)

where ξ−2, . . . , ξ1 are the initial values of the polynomial
sequence dependent on the boundary conditions, and Xi( j)
inherit the selective property

Xi( j) = δi, j for only i, j = −2, . . . , 1. (101)

That these functions Xi( j) exist and that they indeed satisfy
equation (100) for arbitrary values of j is discussed in appendix
E.

The remaining task is to obtain the initial values
ξ−2, . . . , ξ1, which follow from the open boundary conditions
equation (90). Further, one has one free degree of freedom,
which we to choose to be the entry ξ1 of �v. In total our ini-
tial values are ξ1, ξ0 = 0; ξ−1 = bξ1/a and ξ−2 follows from
ξN+1 = 0 and equation (100),

ξ−2 = −ξ1
a X1(N + 1) + b X−1(N + 1)

a X−2(N + 1)
.

Demanding further bξN+2 − aξN = 0 quantizes the momenta
κ1,2 and in turn λ = E±(κ1,2), according to equation (93) (the
relation between Xj and κ1,2 is discussed in the appendix
E). Notice that the form given by equations (100) and (102)
(below) hold for all eigenstates of the Kitaev BdG Hamil-
tonian; the distinction between extended/decaying states and
MZM is made by the values of k1,2, or equivalently κ1,2.

The second part of the eigenstate �w, i.e. �u, follows in prin-
ciple from equation (99). A simpler and faster way is to con-
sider h† h�u = λ2�u. A comparison of h and h† reveals that they
transform into each other by exchanging a and b and switch-
ing μ into −μ. Consequently, the structure of the entries of �u
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follow essentially from the ones of �v. Thus, we find that the σi

obey equation (89) too, yielding

σ j =

1∑
i=−2

σi Xi( j), j ∈ Z (102)

with the same functions Xi(j). The boundary condition on �u
reads

σ0 = σN+1 = aσN+2 − bσN = aσ1 − bσ−1 = 0.

Proceeding as we did for �v yields σ0 = 0, σ−1 = aσ1/b and

σ−2 = −σ1
b X1(N + 1) + a X−1(N + 1)

b X−2(N + 1)
, (103)

where σ1 is fixed by the first line of equation (99)

σ1 =
iμ ξ1 + b ξ2

λ
. (104)

The last open boundary condition aσN+2 − bσN = 0 is satis-
fied for λ = E±(κ1,2) and thus already by the construction of
�v. We notice that we assumed λ �= 0 in order to obtain σ1;
the case λ = 0 is discussed in section 4 below.

In the limit of μ = 0 on �w it holds that

X−2(2l + 1)|μ=0 = 0,

X0(2l + 1)|μ=0 = 0,

X−1(2l)|μ=0 = 0,

X1(2l)|μ=0 = 0,

for all values of l; thus only two initial values for ξj and two
for σj are necessary to fix the sequences.

Finally, one can prove easily that the functions Xi(j) are
always real and in consequence all ξj (σj) are real (pure imag-
inary) if ξ1 is chosen to be real. Thus, the corresponding
operators ψ�w (ψ†

�w) can never square to 1/2.

6. MZM eigenvectors at finite μ

The technique outlined above (in particular, equation (104))
cannot be used directly for exact zero energy modes, because
then λ = 0 in equations (98) and (99). In this section we
demonstrate the Majorana nature of the zero energy solutions
satisfying equation (87), and we give the explicit form of the
associated MZM using a different technique, which (similar to
the Chebyshev polynomials method in [27]) requires only the
use of Fibonacci, not Tetranacci polynomials. This simplifica-
tion is caused by the fact that setting λ = 0 decouples the two
Majorana sublattices, while setting μ = 0 decouples the two
SSH-like chains.

We use the SSH-like description equation (23) of the Kitaev
chain whereμ �= 0 couples both chains together. Consequently
an eigenstate �ψ =

(
�vα, �vβ

)T
has in general no zero entries and

we use the same notation for the components of �vα, �vβ as in
the sections 4.1 and 4.2.

Figure 10. Illustration of the sawtooth pattern of �ψA. The real space
position of the entries xl (Yl) of �ψA is at j = 2l − 1 ( j = 2l ) on
chain α (β) and marked by the blue (light blue) spheres. The blue
line connects these entries as guide to the eye.

The zero energy values are twice degenerated, as one can
see from equation (86), and the associated zero modes are con-
nected by the chiral symmetry C. Thus, we get zero energy

states by superposition �ψA,B :=
(
�ψ ± C �ψ

)
/2 too. The chi-

ral symmetry equation (80), contains an alternating pattern of
±1, such that �ψA (�ψB) includes only non zero entries on the
Majorana sublattice A (B). Hence, �ψA (�ψB) contains only xl

(Xl) and Y j (yj) terms and the last component depends on
whether N is odd or even. In the latter case we have

�ψA =
(

x1, 0, x2, 0, . . . , x N
2

, 0
∣∣∣ 0,Y1, 0,Y2, . . . , 0, YN

2

)T
,

�ψB =
(

0, y1, 0, y2, . . . , 0, y N
2

∣∣∣X1, 0,X2, 0, . . . , X N
2

, 0
)T

.

The form of the odd N eigenvectors is quite similar, see
equations (G15) and (G16).

The composition of �ψA is illustrated in figure 10, where its
entries are shown to form a sawtooth like pattern, following
the entries of �ψA on both SSH-like chains.

The full calculation is given in appendix G. We focus here
on �ψA exclusively, because the �ψB components follow essen-
tially from �ψA by exchanging a and b and replacing iμ by
−iμ. The chemical potential has still to obey equation (87).

The components of the zero mode �ψA have to satisfy
(l = 1, . . . , N/2 − 1)

b xl+1 − a xl + iμYl = 0, (105)

bYl+1 − aYl + iμ xl+1 = 0, (106)

for even N, and the open boundary conditions are

Y0 = y0 = X N
2 +1 = x N

2 +1 = 0.

The situation for the entries of �ψA for odd N is similar

b x j+1 − a x j + iμY j = 0, (107)

bYi+1 − aYi + iμ xi+1 = 0, (108)

where j = 1, . . . , (N − 1)/2, i = 1, . . . , (N − 3)/2. The open
boundary condition changes to

Y0 = y0 = YN+1
2

= y N+1
2

= 0.
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Solving these recursive formulas leads in both cases to

xl = x1
sin[θn (2l − 1)]

sin(θn)

(
−a

b

)l−1
, (109)

with θn = nπ/(N + 1), n = 1, . . . , N and

Yl = −x1 sgn(t +Δ)
sin(2 θn l)

sin(θn)

(
−a

b

) 2l−1
2

, (110)

where x1 is a free parameter and −a/b � 0 due to t2 � Δ2.
Recalling that a = i (Δ− t), b = i (Δ+ t), equations (109),
(110) predict an oscillatory exponential decay of the coeffi-
cients xl, Yl. For example

xl = x1
sin[θn (2l − 1)]

sin(θn)
e−(l−1)d/ξ, (111)

where the decay length is defined by ξ = d/
∣∣∣ln( t−Δ

t+Δ

)∣∣∣, for

t > Δ > 0. Summarizing: the zero energy modes �ψA,B look
like small or strongly suppressed standing waves with n − 1
nodes for n = 1, . . . , Nmax and Nmax = N/2 (Nmax = N − 1/2)
for even (odd) N. The expressions for Xl and yl are obtained
in a similar way

Xl = X1
sin[θn (2l − 1)]

sin(θn)

(
−b

a

)l−1

, (112)

yl = −X1 sgn(t −Δ)
sin(2 θn l)

sin(θn)

(
−b

a

) 2l−1
2

, (113)

and X1 can be freely chosen. The open boundary conditions
for l = 0 are satisfied by construction of Yl (yl), while the
remaining ones follow due to the structure of θn.

The zero mode �ψA is shown in figure 11 for a various
range of parameters. For not too large ratios t/Δ > 1, the
zero mode �ψA is mostly localised at one end of the Kitaev
chain and decays away from it in an oscillatory way. The
eigenstate �ψB is concentrated on the opposite end. While the
oscillation depends on the chemical potential μn associated to
the zero mode, according to equation (87), the decay length
is only set by the parameters Δ and t. Thus, as the ratio of
t/Δ is increased, the zero energy mode gets more and more
delocalized.

The zero energy states �ψA,B are MZM’s, since they are
eigenstates of the particle hole operator P equation (79) for
real or pure imaginary values of x1, X1. Further, the states �ψ =
�ψA + �ψB and C �ψ = �ψA − �ψB are MZM’s too. On the other
hand a fermionic state is constructed with �ψ± = �ψA ± i �ψB,
similar to what was found in section 4 for the μ = 0 case, or
at the Kitaev points in equations (4a) and (4b) in section 2.1.

There are three limiting situations we would like to discuss:
t →±∞, N →∞, and how the eigenstate changes if the sign
of the chemical potential is reverted. For the first situation we
notice that larger hopping amplitudes affect the decay length
ξ. Because −a/b → 1 for t →±∞, this implies also that ξ →
∞ in that limit. Hence oscillations are less suppressed for
large values of t, as illustrated in figure 11. Already a ratio of
t/Δ ≈ 100 is enough to avoid a visible decay for N ≈ 20. This

Figure 11. Majorana zero mode �ψA for various parameter sets. The
considered parameters are denoted by different symbols on the
topological phase diagram. The dark (light) blue spheres follow
xl/x1 (Yl/x1) at position j = 2l − 1 ( j = 2l) from equation (109)
and (110). The decay length of the MZM increases for larger ratios
of t/Δ for a fixed value of θn, until the state is delocalised over the
entire system. Lowering the chemical potential, e.g. following the
vertical orange line, but keeping t/Δ fixed, changes the shape of the
MZM’s. Large decay length and chemical potential leads to
Majorana modes which have highest weight in the center of the
chain.

effect can be found as long as N is finite, for appropriate values
of the ratio t/Δ.

What happens instead for larger system sizes? Regardless
of how close −a/b is to 1, for a finite t, at some point the expo-
nent j(l) in xl Yl, Xl and yl leads to significantly large or small
values. Thus, the state �ψA (�ψB) becomes more localised on the
left (right) end for t > 0, and on the right (left) one for t < 0.

If we change the chemical potential to its negative value we
find that yl, Yl only change their sign. For odd N and for θn =
π/2, i.e. μ = 0, one recovers the result in the equations (71)
and (72).

7. Numerical results and impact of disorder

In this section we discuss the impact of disorder on the topo-
logical boundary states. To this extent we investigate numeri-
cally the lowest energy eigenvalues of the finite Kitaev chain.

7.1. The clean Kitaev chain

The features predicted analytically above are also clearly vis-
ible in the numerical calculations. The lowest positive energy
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Figure 12. Numerical results for the energy E0 of the lowest
positive energy state as a function of t/Δ, μ/Δ and system size N.
(a) E0 as a function of t and μ for N = 20. The red line marks the
boundary of the bulk topological phase. The N/2 dark lines coincide
with the Majorana lines given by equation (87). (b) Zoom into the
neighbourhood of the Kitaev point at μ = 0 and t = Δ, showing the
absence of zero energy solutions for Δ < t in the nominally
non-trivial phase. (c) E0 as a function of μ and the system size N for
t/Δ = 17. The red line marks μ = 2t, the boundary of the bulk
topological phase. As N increases, the number of μ yielding zero
energy solutions also increases according to equation (87), and the
maximum energies of the bound states decrease. (d) The values of
E0 for the same set of parameters as in (c), projected onto the N–E0
plane. The ground state energy E0 shows a μ dependent, oscillatory
behavior in the system size N, where the maximum energies follow
with very good accuracy an aμexp(−Nd/ξ) rule for sufficiently
large values of N, with ξ from equation (73) and the numerical
prefactor aμ.

eigenvalues E0 of a finite Kitaev chain, with the Hamiltonian
given by equation (1) and varying parameters, are shown in
figure 12. The phase diagram in figure 12(a) is the numer-
ical equivalent of that shown in figure 11, but for a smaller
range of t and μ. Because of the necessarily discrete sampling
of the parameter space, the zero energy lines are never met
exactly, hence along the Majorana lines we see only a suppres-
sion of E0. Along the border of the topological regime, μ � 2t,
all the boundary states in a finite system have finite energy,
as shown in figure 12(b). Figure 12(c) displays E0 for fixed
t/Δ = 17, as a function of μ and N. The number of
near-zero energy solutions increases linearly with N, accord-
ing to equation (87). It is worth noting that a spatial overlap
between Majorana components of the end states in a short sys-
tem does not need to lead to finite energy (cf. the right column
of figure 11). The decay length ξ of the in-gap eigenstates,
defined in equation (73), is determined by the ratio t/Δ and is

Figure 13. The lowest (E0) and second lowest (E1) energy
eigenvalue of a Kitaev chain with N = 20 sites as a function of μ for
various ratios of t/Δ. Thin lines correspond to the eigenvalues of a
clean chain, thick lines to those of a chain with random on-site
disorder εi ∈ [−4Δ, 4Δ]. The red line marks the boundary of the
topological phase. Each disorder line results from averaging over a
100 disorder realizations.

Figure 14. The lowest energy eigenvalue E0 of a Kitaev chain with
N = 20 sites as a function of μ for t/Δ = 17. Thin lines correspond
to the eigenvalues of a clean chain, thick lines to those of a chain
with random on-site disorder εi ∈ [−W, W], for two disorder
realizations. The red line marks the boundary of the topological
phase.

the same both for the near-zero energy states along the Majo-
rana lines and for the finite energy states between them. It
is the maximum energy of the boundary states that decreases
as E0,max ∝ exp(−Nd/ξ) as N is increased, as illustrated in
figure 12(d), in agreement with equation (42) and [2, 23, 24].
The minimum energy of zero can be reached for any chain
length, provided that the chemical potential is appropriately
tuned.
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7.2. Topological protection against Anderson disorder

One of the most sought after properties of topological states
is their stability under perturbations which do not change the
symmetry of the Hamiltonian. In order to see whether the non-
Majorana topological modes enjoy greater or lesser topolog-
ical protection than the true Majorana zero modes, we have
calculated numerically the spectrum of a Kitaev chain with
Anderson-type disorder as a function of μ for N = 20 and
three different values of t/Δ. The disorder was modeled as
an on-site energy term εi whose value was taken randomly
from the interval [−W, W]. The energies E0, E1 of the two low-
est lying states are plotted in figure 13. In all plots W = 4Δ,
i.e. twice larger than the ±2Δ gap at μ = 0. Each curve is
an average over 100 disorder configurations. Even with this
high value of the disorder it is clear that the energy of the in-
gap states is rather robust under this perturbation. For t/Δ = 2,
i.e. close to the Kitaev point where the boundary states are
most localized, they are nearly immune to disorder–its influ-
ence is visible only at high μ and in the energy of the
first extended state. For higher ratios of t/Δ, closer to the
value of N + 1 (cf equation (40) and the discussion under
equation (42)), the lowest energy states seem to be strongly
perturbed and the Majorana zero modes entirely lost. This is
however an artifact of the averaging–the energy E0 plotted
in figure 14 for several disorder strengths W shows that for
any particular realization of the disorder the zero modes are
always present, but their positions shift to different values of
μ. The existence of these crossings is in fact protected against
local perturbations and they correspond to switches of the
fermionic parity [22].

8. Conclusion

Due to its apparent simplicity, the Kitaev chain is often used
as the archetypal example for topological superconductivity
in one dimension. Indeed, its bulk spectrum and the asso-
ciated topological phase diagram are straightforward to cal-
culate, and the presence of Majorana zero modes (MZM) at
special points of the topological phase diagram, known as
Kitaev points (μ = 0, t/Δ = ±1 in the notation of this paper),
is easy to demonstrate. However, matters become soon com-
plicated when generic values of the three parameters μ, Δ and
t are considered.

In this work we have provided exact analytical results for
the eigenvalues and eigenvectors of a finite Kitaev chain valid
for any system size. Such knowledge has enabled us to gain
novel insight into the properties of these eigenstates, e.g. their
precise composition in terms of Majorana operators and their
spatial profile.

Our analysis confirms the prediction of Kao [21], whereby
for finite chemical potential (μ �= 0) zero energy states only
exists for discrete sets of μ(Δ, t) which we dubbed ‘Majorana
lines’. We calculated the associated eigenvectors and demon-
strated that such states are indeed MZM. Importantly, such
MZM come in pairs, and because they are made up of Majo-
rana operators of different types, they are orthogonal. In other
words the energy of these modes is exactly zero, even when

the two MZM are delocalized along the whole chain (which
depends on the state’s decay length ξ).

Beside of the Majorana lines, but still inside the topolog-
ical region, finite energy boundary states exist. We studied
the behavior of the energy E0 of the lowest state numeri-
cally as a function of t/Δ, μ/Δ and of the system size L =
Nd. We found that with good accuracy the maximum energy
E0,max ∝ exp(−L/ξ). This energy, and hence the energy of all
the boundary states, tends to zero in the thermodynamic limit
N →∞. For fixed N the ratio t/Δ can be varied until the
decay length ξ becomes of the order of the system size L and
hence the associated E0,max is not exponentially close to zero
energy.

All the boundary states in the topological region, whether
of exact zero energy or not, are of topological nature, as pre-
dicted by the bulk-edge correspondence. This fact is important
in the context of topological quantum computation. In fact,
whether a state has exact zero energy or not is not relevant
for computation purposes, as long as this state is topologi-
cally protected. For the prototypical model of the finite Kitaev
chain considered in this paper this condition is best satisfied
in the vicinity of the Kitaev points t/Δ = ±1, μ = 0 indepen-
dent of the system’s size. When a random disorder of Anderson
type is introduced in the Kitaev chain, our numerical results
show that the upper bound E0,max is remarkably robust, con-
firming the topological protection of all topological states.

The fact that even in short chains, with large spatial overlap
of the Majorana components, the energy of the subgap state
can still be strictly zero could have interesting implications for
the experiments. For example, in STM-spectroscopy experi-
ments with topological chains like in Nadj-Perge et al in [12]
or Kim et al in [16], this would yield a zero-bias Majorana
peak delocalized along the whole chain.

Although our treatment using Tetranacci polynomials for
μ �= 0 is general (sections 5 and 6), we have dedicated spe-
cial attention to two parameter choices in which the Tetranacci
polynomials reduce to the generalized Fibonacci polynomials.
The first case is that of zero chemical potential discussed in
sections 3 and 4 of the paper, where the Kitaev chain turns
out to be composed of two independent SSH-like chains. This
knowledge allows one a better understanding of the differ-
ence between an even and an odd number N of sites of the
chain. This ranges from different quantization conditions for
the allowed momenta of the bulk states, to the presence of
MZM. While MZM are always present for odd chains, they
only occur at the Kitaev points for even chains. When μ is
allowed to be finite, the Kitaev points develop into Majorana
lines hosting MZM for both even and odd chains. In the ther-
modynamic limit the distinction between even and odd number
of sites disappears. The fact that E = 0 at the Majorana lines
decouples the two Majorana sublattices, and again allows us
to use the simpler Fibonacci polynomials.
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Appendix A. A note on Fibonacci and Tetranacci
polynomials

An object of mathematical studies are the Fibonacci numbers
Fn (n ∈ N0) defined by

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1, (A1)

which frequently appear in nature. A more advanced sequence
is the one of the Fibonacci polynomials [36] Fn(x), where

Fn+2(x) = x Fn+1(x) + Fn(x) (A2)

F0(x) = 0, F1(x) = 1,

with an arbitrary complex number x which gives different
weight to both terms. The polynomial character becomes
obvious after a look at the first few terms

0, 1, x, x2 + 1, x3 + 2x. (A3)

The so called generalized Fibonacci polynomials [37] are
defined by

Fn+2(x, y) = x Fn+1(x, y) + y Fn(x, y) (A4)

F0(x, y) = 0, F1(x, y) = 1,

where x, y are two complex numbers. The second weight
changes the first elements of the sequence in equation (A2)
to

0, 1, x, x2 + y, x3 + 2x y. (A5)

There is a general mapping between the sequences Fn(x) in
equation (A2) and Fn(x, y) in equation (A4), namely

Fn(x, y) = y(n−1)/2 Fn(x/
√

y), (A6)

where Fn(x/
√

y) obeys equation (A2) with x/
√

y instead of x.
A last generalization is to consider arbitrary initial values

Fi(x, y) = fi, i = 0, 1 and keeping [38]

Fn+2(x, y) = x Fn+1(x, y) + y Fn(x, y). (A7)

This changes the first terms into

f0, f1, x f1 + y f0, x2 f1 + y (x f0 + f1),

x3 f1 + y2 f0 + xy ( f0 + 2 f1).

The Fibonacci polynomials ζ2n−1, ζ2n, ε2n−1, ε2n we consider
in the spectral analysis are of the last kind with x = λ2 + a2 +
b2, y = −a2b2 (a = i(Δ− t), b = i(Δ+ t)) and with different
initial values for odd and even index as well as different ones
for ζ and ε. The first terms for ζ2n−1 are

ζ1 = λ,

ζ3 = λ (λ2 + a2 + b2),

ζ5 = λ
[
(λ2 + a2 + b2) − a2b2

]
,

ζ7 = λ (λ2 + a2 + b2)
[
(λ2 + a2 + b2) − 2a2b2

]
,

while one finds for ζ2n

ζ0 = 1,

ζ2 = λ2 + b2,

ζ4 = (λ2 + a2)2 + a2λ2,

ζ6 = (λ2 + a2)3 + b2(λ2 + a2)2 + a2λ2(λ2 + a2) + a2b4.

The expressions for ε2n (ε2n−1) follow from the ones of ζ2n

(ζ2n−1) by exchanging a and b.
A closed form for Fibonacci numbers/polynomials is called

a Binet form, see for example [38]. In the case of ζn this form
is given in equations (B20) and (B21).

In order to obtain the general quantization condition for
the wavevectors of the Kitaev chain we face further gen-
eralizations of Fibonacci polynomials, so called Tetranacci
polynomials τ n, defined by

τn+4 = x3 τn+3 + x2 τn+2 + x1 τn+1 + x0 τn (A8)

with four complex variables x0, . . . , x3 and four starting val-
ues τ 0, . . . , τ 3. These polynomials are a generalisation of
Tetranacci numbers [41, 42] and their name originates from
the four terms on the r.h.s. of equation (A8). The form of
Tetranacci polynomials ξj we deal with in this work, is pro-
vided by equation (D4).

Appendix B. Spectrum for μ = 0

B.1. Characteristic polynomial in closed form

The full analytic calculation of the spectrum is at best per-
formed in the basis of Majorana operators γA(B)

j , ordered
according to the chain index

Ψ̂M, co :=
(
γA

1 , γB
1 , γA

2 , γB
2 , . . . , γA

N , γB
N

)T
. (B1)

Then the BdG Hamiltonian becomes block tridiagonal

HKC
M,co =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A B
B† A B

B† A B
. . .

. . .
. . .

B† A B
B† A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2N×2N

, (B2)

where A and B are 2 × 2 matrices

A =

[
0 −iμ
iμ 0

]
, B =

[
0 a
b 0

]
. (B3)

Since we are interested in the spectrum, we have essentially
only to calculate (and factorise) the characteristic polynomial
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Pλ

(
HKC

)
= det (λ𝟙−HKC) which reads simply

Pλ = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ𝟙 −B
−B† λ𝟙 −B

−B† λ𝟙 −B
. . .

. . .
. . .

−B† λ𝟙 −B
−B† λ𝟙

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2N×2N

,

(B4)
at zero μ. In the following we will consider λ to be just a
‘parameter’, which is not necessarily real in the beginning.
Further, we shall impose (only in the beginning) the restric-
tion λ �= 0. However, our results will even hold without them.
The validity of our argument follows from the fact that the
determinant Pλ is a smooth function

Pλ ∈ C∞ (P) , (B5)

in the entire parameter space P :=C3, which contains a, b and
λ.

The technique we want to use to evaluate Pλ is essentially
given by the recursion formula of the 2 × 2 matrices Λj [43,
44]:

Λ j = λ𝟙2 − B†Λ−1
j−1B, Λ1 :=λ𝟙2, (B6)

where j = 1, . . . , N and Pλ =
∏N

j=1 det
(
Λ j

)
.

The matrices B and B† are pure off-diagonal matrices and
since λ𝟙2 is diagonal, one can prove that Λj has the general

diagonal form of Λ j :=

[
x j 0
0 y j

]
(for all j). The application of

equation (B6) leads to a recursion formula for both sequences
of entries

x j+1 = λ+
b2

y j
,

y j+1 = λ+
a2

x j
,

and the initial values are x1 = y1 = λ. We find xj and yj to be
fractions in general, and define ζ j, εj, β j and δj by

x j =:
ζ j

β j
,

y j =:
ε j

δ j
,

to take this into account. The initial values can be set as

ζ1 = ε1 = λ, (B7)

β1 = δ1 = 1, (B8)

and after a little bit of algebra we find their growing rules to be

ζ j+1 = λ ε j + b2 δ j, (B9)

ε j+1 = λ ζ j + a2 β j, (B10)

β j+1 = ε j, (B11)

δ j+1 = ζ j, (B12)

where j starts from 1. The definitions ζ0 := δ1 = 1 and
ε0 :=β1 = 1, enable us to get rid of the δj and β j terms inside
equations (B9) and (B10). Hence

ζ j+1 = λ ε j + b2 ζ j−1, (B13)

ε j+1 = λ ζ j + a2 ε j−1, (B14)

which leads to the relations

ζ2 = λ2 + b2, (B15)

ε2 = λ2 + a2. (B16)

We already extended the sequences of ζ j and εj artificially
backwards and we continue to do so, using the equations (B13)
and (B14), starting from j = −1 with ζ−1 = ε−1 = 0. Please
note there are no corresponding x0, y0 or even x−1, y−1 expres-
sions, since they would involve division by 0.

The last duty of βj and δj is to simplify the determinant Pλ

by using the equations (B8), (B11) and (B12)

Pλ =

N∏
j=1

det
(
Λ j

)
=

N∏
j=1

x j y j = ζN εN , (B17)

which reduces the problem to finding only ζN and εN.
Please note that the determinant is in fact independent of

the choice of the initial values for ζ1, ε1, β1 and δ1 in the
equations (B7) and (B8). Further, equations (B13), (B14) and
(B17) together show the predicted smoothness of Pλ in P and
all earlier restrictions are not important anymore. Finally we
consider λ to be real again.

Even though it seems that we are left with the calculation of
two polynomials, we need in fact only one, because both are
linked via the exchange of a and b. Note that λ is considered
here as a number and thus does not depend on a and b. Further,
the dispersion relation is invariant under this exchange.

The connection of ζ j and εj for all j � −1 is

ζ j ≡ ζ j(a, b) = ε j(b, a),

ε j ≡ ε j(a, b) = ζ j(b, a),

and can be proven via induction using equations (B13) and
(B14). Decoupling ζ j and εj yields

ζ j+2 =
[
λ2 + a2 + b2

]
ζ j − a2b2 ζ j−2, (B18)

where one identifies them as (generalized) Fibonacci polyno-
mials [36, 37]. The qualitative difference between even and
odd number of sites is a consequence of equation (B18) and
the initial values for ζ j.

The next step is to obtain the closed form expression of ζ j

(εj), the so called Binet form. We focus exclusively on ζ j.
One way to keep the notation easier is to introduce

x :=λ2 + a2 + b2, y := a2b2, vj := ζ2j and uj := ζ2j−1, such that
uj (vj) obey

u j+1 = x u j − y u j−1.
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The Binet form can be obtained by using a power law ansatz
uj ∝ rj, leading to two fundamental solutions

r1,2 =
x ±

√
x2 − 4 y
2

. (B19)

Please note that this square root is always well defined, which
can be seen in the simplest way by setting λ to zero. Conse-
quently, the difference between r1 and r2 is never zero.

A general solution of uj (vj) can be achieved with a super-
position of r1,2 with some coefficients c1,2,

u j = c1 r j
1 + c2 r j

2,

due to the linearity of their recursion formula. Both constants
c1 and c2 are fixed by the initial values for ζ j, for example
u0 = ζ−1 = 0 and u1 = ζ1 = λ and similar for vj. After some
simplifications, we finally arrive at

ζ2 j−1 = λ
r j

1 − r j
2

r1 − r2
, (B20)

ζ2 j =

[
λ2 + b2

] (
r j

1 − r j
2

)
− r1 r2

(
r j−1

1 − r j−1
2

)
r1 − r2

,

(B21)

in agreement with [36–38]. The validity of the solutions is
guaranteed by a proof via induction, where one needs mostly
the properties of r1,2 to be the fundamental solutions. The
exchange of a and b leads to the expressions

ε2 j−1 = λ
r j

1 − r j
2

r1 − r2
, (B22)

ε2 j =

[
λ2 + a2

] (
r j

1 − r j
2

)
− r1 r2

(
r j−1

1 − r j−1
2

)
r1 − r2

,

(B23)

where we used that r1,2 is symmetric in a and b. At this stage
we have the characteristic polynomial in closed form for all Δ,
t and more importantly for all sizes N at zero μ.

We can already anticipate the twice degenerated eigenval-
ues of the odd sized Kitaev chain, because from the closed
forms of εj and ζ j it follows immediately

ζodd = εodd. (B24)

Notice that equation (B24) is important to derive the char-
acteristic polynomial via the SSH description of the Kitaev
BdG Hamiltonian at μ = 0 and to show the equivalence to the
approach used here. It is recommended to use the determinant
formula in [45] together with equations (B9) and (B10) for the
proof.

The main steps of the factorisation are mentioned in the next
section.

B.2. Factorisation of generalized Fibonacci polynomials

The trick to factorise our Fibonacci polynomials [36, 37] bases
on the special form of r1,2. The ansatz is to look for the

eigenvalues λ in the following form

x = 2
√

y cos(θ), (B25)

which is actually the definition of θ. The hermiticity of the
Hamiltonian enforces real eigenvalues and consequently θ can
be chosen either real, describing extended solutions, or pure
imaginary, which is connected to decaying states. The ansatz
leads to an exponential form of the fundamental solutions

r1 =
√

y ei θ,

r2 =
√

y e−i θ,

and we consider θ ∈ R first. Thus, we find the eigenvalues for
odd N

εN = ζN = λ
sin
(

N+1
2 θ
)

sin (θ)
√

y
N−1

2 = 0.

One obvious solution is λ = 0. The introduction of 2kd = θ,
where d is the lattice constant of the Kitaev chain, leads to:

sin [(N + 1) kd]
sin (2 kd)

= 0, (B26)

and solutions inside the first Brillouin-zone are given by

knd =
nπ

N + 1

where n runs from 1, . . . , N without (N + 1)/2. Please note that
equation (B26) cannot be satisfied for N = 1.

The even N case requires more manipulations. We first
rearrange equation (B21) as

ζ2 j =

(
λ2 + b2 − r2

)
r j

1 −
(
λ2 + b2 − r1

)
r j

2

r1 − r2
.

The expressions λ2 + b2 − r1,2 are simplified to

λ2 + b2 − r1 = x − a2 − r1 =
√

y e−iθ − a2,

λ2 + b2 − r2 =
√

y eiθ − a2.

In the end ζ2j becomes

ζ2 j =
(√

y
) j−1

√
y sin [θ ( j + 1)] − a2 sin (θ j)

sin (θ)
. (B27)

Note that the competition ofΔ and t is hidden inside the square
root

√
y =

{
Δ2 − t2, if |Δ| > |t|
t2 −Δ2, else

,

affecting both the quantization condition and the dispersion
relation E±(k) = λ(θ), which follow from equation (B25).
However, both situations lead to the same result, because the
momenta and the spectrum are shifted by π/2 (with respect to
kd). From ζN it follows:

Δ
sin [kd (N + 1)] cos(kd)

sin(2 kd)
+ t

cos [kd (N + 1)] sin(kd)
sin(2 kd)

= 0,

or in shorter form

tan [kd (N + 1)] = −Δ

t
tan(kd), kd �= 0,

π

2
(B28)
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for even N. The polynomial εN can be treated in the same way
leading to

tan [kd (N + 1)] =
Δ

t
tan(kd), kd �= 0,

π

2
. (B29)

From equation (B25) follows the bulk spectrum for all N,

λ(θ) = E±(kd) = ±
√

4Δ2 sin2(kd) + 4t2 cos2(kd),

in agreement with equations (34) and (35).
The case of decaying states is similar, but not just done by

replacing k by iq. The following case is only valid for even N,
since we have already all 2N eigenvalues of the odd N case.

Our ansatz is modified to

x = −2
√

y cosh(θ),

by an additional minus sign, which is important to find the
decaying state solutions. After some manipulations ζN = 0
yields the quantization conditions

t tanh [qd (N + 1)] +Δ tanh(qd)
sinh(2 qd)

= 0, |Δ| � |t|,

(B30)

Δ tanh [qd (N + 1)] + t tanh(qd)
sinh(2 qd)

= 0, |t| � |Δ|,

(B31)

where qd = θ/2. The conditions for qd = 0 as solution, cor-
responding to infinite decay length ξ, turn out to be ±t/Δ =
N + 1 (if |t| � |Δ|) or ±Δ/t = N + 1 (else) and follow by
applying the limit qd → 0 on equations (B30) and (B31).

A last simplification can be done for qd �= 0

tanh [qd (N + 1)] = −m tanh(qd),

where we introduced

m =

⎧⎪⎨
⎪⎩
Δ

t
if|Δ| > |t|

t
Δ

if|t| > |Δ|
.

The criterion to find a wave vector is that (−m) � 1, but not
larger than N + 1, which leads then to exactly two solutions±q
and otherwise to none. The corresponding eigenvalues can be
obtained from

E±(qd) = ±
√

4t2 cosh2(qd) − 4Δ2 sinh2(qd), |Δ| � |t|,

E±(qd) = ±
√

4Δ2 cosh2(qd) − 4t2 sinh2(qd), |t| � |Δ|,

which can be zero. The results for εN can be obtained by
replacing t with −t everywhere.

Appendix C. Eigenvectors for zero μ

The simplest way to calculate the eigenstates of the Kitaev
Hamiltonian is the use of the SSH-like basis for μ = 0 from
equation (23). We define the eigenvector �ψ as

�ψ =
(
�vα, �vβ

)T
,

for all N to respect the structure of the Hamiltonian. More-
over, one can search for solutions belonging only to one block
(�vα, �0β)T or (�0α, �vβ)T, without any restriction. In other words
either is �vα zero or �vβ and we will mention only non zero
entries from now on. We report here only about the calculation
of �vα, because the one for �vβ can be performed analogously.

The general idea behind the eigenvector calculation of tridi-
agonal matrices is given in [40], but we consider here all
possible configurations of parameters.

C.1. N even

The sublattice vectors are defined via the N entries

�vα =
(
x1, y1, x2, y2, . . . , xN/2, yN/2

)T
,

�vβ =
(
X1, Y1, X2, Y2, . . . , XN/2, YN/2

)T
.

Solving
(
Heven

α − λ 𝟙
)
�vα = 0 leads to

a y1 = λ x1, (C1)

−a xN/2 = λ yN/2, (C2)

and

b xl+1 − a xl = λ yl, (C3)

a yl+1 − b yl = λ xl+1, (C4)

where l runs from 1 to (N/2) − 1. The coupled
equations (C1)–(C4) for the entries of the eigenvector
are continuous in all parameters. However, resolving to the
xl’s and yl’s may lead to problems for certain values of Δ, t
and λ.

Case 1. |Δ| �= |t|. The parameter setting excludes λ =
0, as we found from our spectral analysis in section 3.
Equations (C3) and (C4) are used to disentangle x’s and y’s.
Both sequences obey

yl+1 =
λ2 + a2 + b2

ab
yl − yl−1, (C5)

where l = 1, . . . , N/2. Thus the y’s and x′s are Fibonacci poly-
nomials [36, 37]. The difference to the previous ones found for
the spectrum is that the new version can be dimensionless in
physical units, depending on the initial values. The transforma-
tion formula [37] to pass from the unitless recursion formula
to the other one is given by equation (A6).

The Binet form of the dimensionless sequences is obtained
with same treatment as for the spectrum. The power ansatz
yl ∝ fl yields the fundamental solutions f1,2, obeying

f1 + f2 =
λ2 + a2 + b2

ab
, (C6)
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f1 · f2 = 1, (C7)

f1 �= f2. (C8)

Due to the linearity of the recursion formula, the most generic
ansatz for yl is

yl = c1 f l
1 + c2 f l

2,

where the constants c1,2 follow from the initial values of y1,2.
The calculation of both constants leads to

yl = y2 Tl−1 − y1 Tl−2,

where Tl is simply [40]

Tl :=
f l
1 − f l

2

f1 − f2
.

Analogously we find

xl = x2 Tl−1 − x1 Tl−2.

A short comment on the initial values y1,2. A hermitian matrix
is always diagonalisable, regardless of degeneracies in its spec-
trum and an eigenvector is well defined only up to the prefac-
tor. Consequently we have the freedom to choose one compo-
nent of �vα. This choice will in turn define all remaining initial
values.

Consider for example x1 to be a fixed value of our choice.
We find y1, x2 and y2 to be

y1 =
λ

a
x1,

y2 =
λ

a
λ2 + a2 + b2

ab
x1,

x2 =
λ2 + a2

ab
x1.

The y2 can be rewritten as y2 = y1 [ f1 + f2] which leads to a
simpler form of all yl’s [40]

yl =
λ

a
x1 Tl. (C9)

After a bit of algebra, one finds xl to be

xl = x1

[
Tl −

b
a

Tl−1

]
. (C10)

So far we found the general solutions of the recursion formulas
equations (C1)–(C4). The comparison of equations (C2) and
(C3) leads to

x N
2 +1 = 0, (C11)

because the recursion formulas themselves do not care about
any index limitation. The last equation means only that the
wave function of a finite system has to vanish outside, at the
boundary, yielding the quantization rule.

The extended states can be obtained with

f1 = e2i kd ,

f2 = e−2i kd,

where equations (C6) and (C7) relate kd and λ, and Tl is recast
as

Tl =
sin(2 kd l)
sin(2 kd)

. (C12)

The last equation for Tl yields via equations (C10) and (C11)
the quantization condition. Thus, the momenta k obey

tan [kd (N + 1)] =
Δ

t
tan (kd) ,

where each solution defines two states with the energy E± from
equation (35).

The decaying states depend strongly on the interplay of Δ
and t. The ansatz is

f1 = s e2 qd,

f2 = s e−2 qd,

where s is defined as

s =

{
+1, |Δ| > |t|
−1, |t| > |Δ|.

Finally the coefficient Tl becomes

Tl(qd) := sl−1 sinh(2 qd l)
sinh(2 qd)

.

The proper q, if existent, leads to two states and satisfies

tanh [qd (N + 1)] = m tanh (qd) ,

where m is

m :=

⎧⎪⎨
⎪⎩

Δ

t
, if |Δ| � |t|

t
Δ

, if |t| � |Δ|
. (C13)

In total we have already all N non normalized states with
respect to the chain α and this approach holds as long as
|Δ| �= |t|.

The remaining cases start again from the
equations (C1)–(C4).

Case 2. Eigenvectors at the Kitaev point. We consider now
Δ = −t, or b = 0, and we have to solve

a y1 = λ x1,

−a xN/2 = λ yN/2,

−a xl = λ yl,

a yl+1 = λ xl+1,

where l runs from 1 to (N − 2)/2. A zero energy mode is obvi-
ously not existing on the α subchain, because λ = 0 would
lead to �vα = 0 which is not an eigenvector by definition. These
zero modes belong to the subchain β for Δ = −t. The only
possible eigenvalues for the extended modes of the α chain
are λ = ±2t [1, 2], see equation (35). Recalling a = −2it,
leads to N/2 independent solutions of dimerised pairs (xl, yl)
with yl = ∓ixl and the signs are with respect to the eigenval-
ues.
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The last cases belong to Δ = t (a = 0), where we search
for the solution of

λ x1 = 0,

λ yN/2 = 0,

b xl+1 = λ yl,

−b yl = λ xl+1,

where l runs from 1 to (N − 2)/2. The first (second) line clearly
states that either λ is zero and/or x1 (yN/2). The zero λ means
on the one hand that most entries vanish x2 = x3 = · · · =
xN/2 = 0 and y1 = y2 = · · · = y(N−2)/2 = 0, since b = 2it �= 0
to avoid a trivial Hamiltonian. On the other hand we have two
independent solutions, first

x1 = 1,

yN/2 = 0,

and second

x1 = 0,

yN/2 = 1,

describing the isolated MZM’s at opposite ends of the chain.
In the case of λ = ±2t, we have N − 2 independent solutions
in form of pairs (yl, xl+1) with yl = ±ixl+1.

The non trivial solutions for�vβ follow by replacing xl →Xl,
yl →Yl and t →−t everywhere.

C.2. N odd

The eigenvectors have similar shape

�vα =
(

x1, y1, x2, y2, . . . , x N−1
2

, y N−1
2

, x N+1
2

)T
,

�vβ =
(
X1, Y1, X2, Y2, . . . , X N−1

2
, YN−1

2
, X N+1

2

)T
,

but the last entry is different compared to the even N case.
Although both subchains have the same spectrum, it is possible
to consider a superposition of eigenstates of the full Hamil-
tonian which belongs to only one chain, for example α. We
consider �vβ to be zero.

The eigenvector system for �vα reads

a y1 = λ x1,

−b y N−1
2

= λ x N+1
2

,

and

b xi+1 − a xi = λ yi,

a yl+1 − b yl = λ xl+1,

with l = 1, . . . , N−3
2 and i = 1, . . . , N−1

2 .
If we consider a, b and λ all to be different from zero, we

find again that the entries of �vα are Fibonacci polynomials

obeying the same recursion formula as in the even N case and
lead to the same solution

yi =
λ

a
Ti x1,

xl =

[
Tl −

b
a

Tl−1

]
x1,

where l = 1, . . . , N+1
2 and Tl,(i) is as before. The ansatz f1 =

e2ikd , f2 = e−2ikd for the extended states influences Tl (Ti anal-
ogously)

Tl =
sin(2 kd l)
sin(2 kd)

,

and leads via
y N+1

2
= 0,

to the equidistant quantization k ≡ kn =
n π

N+1 with n =
1, . . . , (N − 1)/2, due to the number of eigenvectors of the sin-
gle SSH-like chain. Both chains share the same spectrum for
odd N and thus we have in total n = 1, . . . , N, n �= (N + 1)/2.

We report here shortly on all other parameter situations.

(a) If we consider a and b to be different from zero, but λ = 0,
we find only one state

xl+1 =

(
Δ− t
Δ+ t

)l

x1, (C14)

and l runs from 1 to (N − 1)/2.
(b) If Δ = t, i.e. a = 0, but λ = ±2t �= 0, we find (N − 1)/2

solutions (yl, xl+1) with yl = ±ixl+1, l = 1, . . . , (N −
1)/2 and x1 = 0 for all.

The zero mode of this setting (Δ = t) is an MZM
localized on x1 = 1, while all other components are zero.

(c) If Δ = −t (b = 0) and λ �= 0 we find (N − 1)/2 solutions
of the form (xl, yl) with yl = ±ixl l = 1, . . . , (N − 1)/2
and x N+1

2
= 0 for all of them. The MZM is localised at

x N+1
2

= 1 for b = 0.
The results for the α chain follow again by replacing

xl →Xl, yl →Yl and t →−t.

Appendix D. Spectrum for finite μ

The BdG Hamiltonian, expressed in the chiral basis Ψ̂c =(
γA

1 , γA
2 , . . . , γA

N , γB
1 , γB

2 , . . . , γB
N

)T
leads via Ĥkc =

1
2 Ψ̂

†
c

Hc Ψ̂c to

Hc =

[
0N×N h

h† 0N×N

]
, (D1)

where the matrix h is

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−iμ a
−b −iμ a

−b −iμ a
. . .

. . .
. . .

−b −iμ a
−b −iμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

. (D2)
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As mentioned in section 5, we look for a solution of

hh† �v = λ2 �v, (D3)

with �v = (ξ1, ξ2 . . . , ξN)T to find the general quantization
rule. The entries of the matrix hh† are(

hh†)
n,m = δn,m

[
μ2 − a2

(
1 − δn,N

)
− b2

(
1 − δn,1

)]
+ iμ (a − b)

[
δn,m+1 + δn+1,m

]
+ ab

(
δn,m+2 + δn+2,m

)
,

and equation (D3) becomes the Tetranacci sequence

ξ j+2 =
λ2 + a2 + b2 − μ2

ab
ξ j − ξ j−2

− iμ

(
a − b

ab

) (
ξ j+1 + ξ j−1

)
, (D4)

where j = 1, . . . , N − 5. The missing four boundary terms are

λ2ξ1 = (μ2 − a2)ξ1 + iμ(a − b)ξ2 + abξ3,

λ2ξ2 = (μ2 − a2 − b2)ξ2 + iμ(a − b) (ξ1 + ξ3) + abξ4,

λ2ξN−1 = (μ2 − a2 − b2)ξN−1 + iμ(a − b) (ξN + ξN−2)

+ abξN−3,

λ2ξN = (μ2 − b2)ξN + iμ(a − b)ξN−1 + abξN−2.

We extend the Tetranacci sequence from j = −∞ to j = ∞,
i.e. the index limitations in equation (D4) can be ignored,
while �v still contains only ξ1, . . . , ξN. Consequently, we can
simplify the boundary conditions by using the recursion for-
mula and further any restriction like N > 3 does not exist. We
find

ξN+1 = ξ0 = 0, (D5)

b ξN+2 = a ξN , (D6)

b ξ1 = a ξ−1. (D7)

The procedure we followed in the context of Fibonacci polyno-
mials was to obtain a closed form with the ansatz ξj = rj, r �=
0. So we do here on starting from equation (D4). Thus, the
characteristic equation for r reads

r4 − λ2 + a2 + b2 − μ2

ab
r2 + 1 + iμ

a − b
ab

(
r3 + r

)
= 0,

and we have to find all four zeros to determine ξj in the end.
We introduce two new variables

ζ =
λ2 + a2 + b2 − μ2

ab
, (D8)

η = iμ
a − b

ab
, (D9)

to simplify the expressions in the following. The characteristic
equation becomes

r4 + η r3 − ζ r2 + η r + 1 = 0.

Dividing by r2(r �= 0) and defining S := r + r−1 leads to

S2 + η S − ζ − 2 = 0, (D10)

where we can read out the solutions S1,2

S1,2 =
−η ±

√
η2 + 4 (ζ + 2)

2
. (D11)

The definition of S amounts to an equation for r

r2 − S r + 1 = 0.

Thus one can insert the solutions S1,2 and solve for r. We
find

r± j =
S j ±

√
S2

j − 4

2
, j = 1, 2, (D12)

yielding directly rjr−j = 1. Here, we choose the ansatz

S1,2 =: 2 cos(κ1,2), κ1,2 ∈ C, (D13)

which is actually the definition of κ1,2. Since the coefficients
S1,2 containλ through the variable ζ , this is in the end an ansatz
for λ. The expression for λ follows easily from equation (D10)
by inserting equation (D13). Using the definiton of η and
resolving for ζ first and in a second step for λ we finally arrive
at Kitaev’s bulk formula

λ
(
κ1,2
)
= ±

√[
μ+ 2t cos

(
κ1,2
)]2

+ 4Δ2 sin2
(
κ1,2
)
.

Notice that by construction we have λ = λ (κ1) = λ(κ2).
Alternatively the sum of S1 and S2 leads via equations (D11),
(D13) to

cos (κ1) + cos (κ2) = − μ t

t2 −Δ2 . (D14)

The use of equation (D14) on the dispersion relation will
indeed yield

λ (κ1) = λ(κ2). (D15)

Let us return to ξj. Since the recursion formula in equation (D4)
is linear, a superposition of all four solutions r±1, r±2

ξn = c1 rn
+1 + c2 rn

−1 + c3 rn
+2 + c4 rn

−2, (D16)

is still a solution with some coefficients c1,2,3,4 ∈ C. From
equation (D12) it follows

r± j = e±iκ j (D17)

and thus

ξn = c1 eiκ1n + c2 e−iκ1n + c3 eiκ2n + c4 e−iκ2n. (D18)

Further, equation (D15) implies that we consider a combina-
tion of states of the same energy. The usually following step
would be to fix these constants, requiring four initial values.
We can use e.g. ξ1 as free parameter. Further setting ξ0 =
ξN+1 = 0, ξ−1 = (b/a)ξ1 as the boundary conditions yield a
sufficient number of constraints.
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The remaining condition aξN = bξN+2 yields the quantiza-
tion rule then. However, if one is not interested in the state �v

or in the general eigenstates of the Kitaev chain, but only in
the quantization rule, one can use a much simpler approach.
Using our ansatz for ξj from equation (D18) and being aware
of the fact that the boundary conditions yield a homogeneous

system, we find

B4×4

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ = �0,

where the boundary matrix B is

B =

⎛
⎜⎜⎝

1 1 1 1
eiκ1(N+1) e−iκ1(N+1) eiκ2(N+1) e−iκ2(N+1)

beiκ1(N+2) − aeiκ1N be−iκ1(N+2) − ae−iκ1N beiκ2(N+2) − aeiκ2N be−iκ2(N+2) − ae−iκ2N

beiκ1 − ae−iκ1 be−iκ1 − aeiκ1 beiκ2 − ae−iκ2 be−iκ2 − aeiκ2

⎞
⎟⎟⎠ .

Demanding det (B) = 0 avoids a trivial solution and leads to
the quantization rule in equations (93) and (94).

Appendix E. The closed formula of Tetranacci
polynomials

The goal here is to obtain the general solutions of a polynomial
sequence ξj, j ∈ Z, which obeys

ξ j+2 =
λ2 + a2 + b2 − μ2

ab
ξ j − ξ j−2

− iμ

(
a − b

ab

) (
ξ j+1 + ξ j−1

)
, (E1)

with arbitrary initial values. We consider here ξ−2, . . . , ξ1,
other choices are possible too, to be the initial values. We want
to determine a closed form expression for all ξj’s. Similar to
equation (D18), the general solution is given by a superpo-
sition of the four fundamental solutions r±i from equation
(D12)

ξ j = c1 r j
+1 + c2 r j

−1 + c3 r j
+2 + c4 r j

−2, (E2)

with some constants c1, . . . , c4 which follow from ξ−2, . . . , ξ1

via ⎡
⎢⎢⎣

r−2
+1 r−2

−1 r−2
+2 r−2

−2

r−1
+1 r−1

−1 r−1
+2 r−1

−2
1 1 1 1

r+1 r−1 r+2 r−2

⎤
⎥⎥⎦
⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
ξ−2

ξ−1

ξ0

ξ1

⎞
⎟⎟⎠ . (E3)

Solving equation (E3) and factorising ξj into contributions of
ξ−2, . . . , ξ1 yields

ξ j =
1∑

i=−2

ξi Xi( j). (E4)

The functions Xi(j) obey by construction (via equation (E3))

Xi( j) = δi, j, for i, j = −2, . . . , 1 (E5)

for all values of λ, μ, a, b and further obey equation (E1).

Despite the short form of ξj in equation (E4), the formulas
of Xi(j) tend to be lengthy, such that we first introduce a short
hand notation for their main pieces. We define

F1( j) :=
r j
+1 − r j

−1

r+1 − r−1
=

r j
+1 − r− j

+1

r+1 − r−1
+1

, (E6)

F2( j) :=
r j
+2 − r j

−2

r+2 − r−2
=

r j
+2 − r− j

+2

r+2 − r−1
+2

, (E7)

where the r.h.s of both equalities arise due to rir−i = 1 for
i = 1, 2. With S1,2 from equation (D11) we find the Xi( j) to
be

X−2( j) =
F2( j) − F1( j)

S1 − S2
, (E8)

X−1( j) =
2∑

σ=1

Fσ( j + 2) + Fσ( j − 1)Fσ̄(2) − Fσ(3)Fσ̄( j)

(S1 − S2)2 ,

(E9)

X0( j) =
2∑

σ=1

Fσ( j + 1)Fσ̄(3) − Fσ( j + 2)Fσ̄(2)

(S1 − S2)2

−
2∑

σ=1

Fσ( j − 1)

(S1 − S2)2 , (E10)

X1( j) =
2∑

σ=1

Fσ( j + 2) + Fσ( j) − Fσ( j + 1)Fσ̄(2)

(S1 − S2)2 , (E11)

where σ̄ is meant as ‘not σ’, e.g. if σ = 1 then we have σ̄ = 2
and vice versa. The presence of S1,2 in the form of Xi(j) arises
due to the definition of F1,2, since they are Fibonacci poly-
nomials with inital values F1,2(0) = 0, F1,2(1) = 1 and obey

Fi( j + 2) = Si Fi( j + 1) − Fi( j).

The proof is done by induction over j and using the relation
between r±i and Si according to the equations (D11) and (D12).

The formulas for Xi( j) and Fi are exact and hold for all
values of μ, a, b (t, Δ) and for all values of λ, regardless of
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whether equation (E1) describes an eigenvector problem or
not. Notice that μ = 0 is a special situation, since

S1|μ=0 = −S2|μ=0

leads to
r+1|μ=0 = −r−2|μ=0

for μ = 0. Thus, we find

F1( j)|μ=0 = (−1) j−1F2( j)|μ=0

yielding

X−2(2l + 1)|μ=0 = 0,

X0(2l + 1)|μ=0 = 0,

X−1(2l)|μ=0 = 0,

X1(2l)|μ=0 = 0,

for all values of l.
The closed formula of ξj can be used in multiple ways. In

the context of eigenvectors the exponential form of the funda-
mental solutions r±i according to equation (D17) is the direct
connection to the momenta κ1,2, and their values follow from
the quantisation rule in equation (93). The corresponding value
of λ = E±(κ1,2) follows then from equation (7). The form of
F1,2 transforms into a ratio of sin(κ1,2 j)/sin(κ1,2). However,
once the energy E±(κ1,2) is known, the explicit use of κ1,2 is
not important, since r±i follow also directly from equation
(D12).

Appendix F. The zeros of the determinant

Our first step is to calculate the determinant of the Kitaev chain
in closed form. We use the chiral basis where the BdG Hamil-
tonian is given by equations (D1) and (D2). The determinant
is obviously

det (Hc) = det (h) det
(
h†) = |det (h)|2, (F1)

and we need only the determinant of h. The calculation is
performed with a sequence of polynomials [45] h0, . . . , hN

h j+1 = −iμ h j + ab h j−1, j = 1, . . . , N − 1 (F2)

with the initial values h0 = 1, h1 = −iμ and the determinant
of h is

det (h) = hN. (F3)

We notice the Fibonacci character [36–38] of the sequence in
equation (F2) and continue with the calculation of the Binet
form. The ansatz hj ∝ Rj (R ∈ C\ {0}) leads to

R2 + iμR − ab = 0,

and the solutions R1,2 are

R1,2 =
−iμ ±

√
4 ab − μ2

2
. (F4)

Our ansatz holds for all parameter choices of μ,Δ and t and
R1,2 obey

R1 + R2 = −iμ, (F5)

R1 R2 = −ab. (F6)

The general form of hj is given by a superposition of R1 and
R2

h j = n1 R j
1 + n2 R j

2 , (F7)

and n1,2 are fixed by the initial values. The calculation can
be simplified by extending the sequence hj backwards with
equation (F2), because h−1 = 0. The use of h−1 and h0 leads
to

n1 =
R1

R1 − R2
, n2 =

−R2

R1 − R2
,

yielding the closed form of hj

h j =
R j+1

1 − R j+1
2

R1 − R2
.

We find the determinant of the Kitaev chain to be

det (Hc) =

∣∣∣∣RN+1
1 − RN+1

2

R1 − R2

∣∣∣∣
2

, (F8)

for all values of μ, t, Δ ∈ R. The determinant does not van-
ish in general, due to equation (F4), but only for a specific
combination of the parameters μ, t, Δ.

In the following we consider t and Δ to be fixed values of
our choice and we search for the values ofμ such that the deter-
minant vanishes. The Fibonacci character of hN enables us to
factorize the determinant [36, 37] and leads automatically to
the zeros. The factorization follows from equation (F4) and
the starting point is the square root:

√
4 ab − μ2 =

√
4 (t2 −Δ2) − μ2.

We have to consider in general three cases

(a) t2 � Δ2 and 4(t2 −Δ2) � μ2,
(b) t2 � Δ2 and 4(t2 −Δ2) � μ2,
(c) t2 � Δ2 and 4(t2 −Δ2) � μ2,

and we introduce the procedure in detail with the first scenario.

F.1. Case (a)

The most general form for μ is

μ = 2
√

t2 −Δ2 f (θ), (F9)

where the function f(θ) accounts for all possible ratios of μ

and
√

t2 −Δ2. The case (a) enforces the function f(θ) to be
real valued, because both μ and

√
t2 −Δ2 are real. Further,

we find that
f 2(θ) � 1, (F10)

since 4(t2 −Δ2) − μ2 � 0. Please note that equation (F10)
needs only to hold for θ on a finite set. From all possible
functions f(θ), a convenient choice is f = cos(θ). The reason
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behind our specific choice is the form of R1,2, because f leads
in
√

4 ab − μ2 to

√
4 ab − μ2 =

√
4 (t2 −Δ2) − μ2

=
√

4 (t2 −Δ2)
[
1 − cos2(θ)

]
= 2
√

t2 −Δ2 sin(θ),

and R1,2( f ) become

R1,2( f ) =
−iμ±

√
4 ab − μ2

2

=
−2i
√

t2 −Δ2 cos(θ) ± 2
√

t2 −Δ2 sin(θ)
2

.

Simplifications lead to

R1,2( f ) = −i
√

t2 −Δ2

{
eiθ,
e−iθ.

Let us focus on the determinant. We find R j
1 − R j

2 to be

R j
1 − R j

2 =
[
−i
√

t2 −Δ2
] j

2i sin(θ j).

Consequently the determinant reads

det (Hc) = (t2 −Δ2)N

[
sin [θ (N + 1)]

sin (θ )

]2

, (F11)

and vanishes for θ = nπ/(N + 1) (n = 1, . . . , N) or t2 = Δ2.
Since Δ, t and θ define together with f1 = cos(θ) the chemical
potential, we find that the determinant of the Kitaev chain is
zero if, and only if:

(a) μ = 2
√

t2 −Δ2 cos
(

n π
N+1

)
,

(b) μ = 0 and t2 = Δ2,

for n = 1, . . . , N, t2 � Δ2 and for all N. A feature of odd N
is the value n = N + 1/2 yielding θ = π/2, i.e. μ = 0 for all
values of Δ, t for t2 � Δ2. In fact μ = 0 holds for odd N
everywhere, as we already know from previous discussion in
appendix B.

We found all zeros in case (a) and we continue with (b).

F.2. Case (b)

We follow the same way of argumentation as above, but we
have to keep in mind that t2 −Δ2 � 0, and 4(t2 −Δ2) < μ2.
The first step is to reshape the square root in R1,2

√
4 ab − μ2 = i

√
μ2 − 4

(
t2 −Δ2

)
, (F12)

where we find a similar situation as in the previous scenario.
Our ansatz is

μ = 2
√

t2 −Δ2g(θ), (F13)

where the function g(θ) is real and obeys

g2(θ) � 1, (F14)

since μ2 � 4(t2 −Δ2). The candidates of our choice are
g±(θ) = ±cosh(θ), where θ is real. The square root becomes
now √

μ2 − 4
(
t2 −Δ2

)
= 2
√(

t2 −Δ2
)

sinh(θ),

and we find R1,2(g+) to be

R1,2(g+) =
−iμ± i

√
μ2 − 4

(
t2 −Δ2

)
2

= −i
√

t2 −Δ2 [cosh(θ) ∓ sinh(θ)] .

Simplifications yield

R1,2(g+) = −i
√

t2 −Δ2

{
e−θ

e θ ,

and the determinant becomes:

det (Hc) =
(
t2 −Δ2

)N
[

sinh (θ [N + 1)]
sinh(θ)

]2

. (F15)

The determinant vanishes only if t2 = Δ2, which by virtue
of equation (F13) implies μ = 0, because the fraction of the
hyperbolic sine functions is always positive. The use of g1,− =
−cosh(θ) leads to equation (F15) again.

F.3. Case (c)

We consider here Δ2 � t2 and 4(t2 −Δ2) − μ2 � 0. We start
by manipulating the square root in R1,2

√
4 ab − μ2 =

√
4 (t2 −Δ2) − μ2 = i

√
μ2 + 4 (Δ2 − t2).

(F16)
Our ansatz is μ = 2

√
Δ2 − t2 v(θ) with a real valued function

v(θ), without further restrictions, because

μ2 = 4 (Δ2 − t2) v2(θ) � −4 (Δ2 − t2),

in view of μ2 � −4(Δ2 − t2). The square root in R1,2 becomes
in general

i
√
μ2 + 4 (Δ2 − t2) = i (Δ2 − t2)

√
v2(θ) + 1,

and one sees immediately that v(θ) = sinh(θ), θ ∈ R is an
appropriate choice. We find for R1,2 the form

R1,2(v) = −i
√
Δ2 − t2

{
−e−θ

eθ
,

where the negative sign in front of the exponential forces us
to distinguish between even and odd N. The determinant reads
finally

det (Hc) = (Δ2 − t2)N

⎧⎪⎨
⎪⎩

cosh [θ (N + 1)]
cosh (θ)

, N even

sinh [θ (N + 1)]
sinh (θ)

, N odd
,

and it is never zero, except for Δ2 = t2 at μ = 0.

27



J. Phys.: Condens. Matter 32 (2020) 445502 N Leumer et al

F.4. Discussion of completeness of all scenarios

In summary, for μ �= 0, we have only non trivial, zero determi-
nants in case (a). How can one be sure that no zero is missed
especially in the settings (b) and (c)? This follows immediately
from equation (F8), because the determinant vanishes only
if

RN+1
1 = RN+1

2 .

Consequently we need first of all |R1| = |R2|. The second part
is to find the proper phase factors and all of them lie on a cir-
cle with radius |R1| in the complex plane. We have found non
trivial solutions only for scenario (a).

In total, we found all conditions det (HKC) = 0. The general
case is when the chemical potential is

μ = 2
√

t2 −Δ2 cos

(
nπ

N + 1

)
, (F17)

with t2 � Δ2 and n = 1, . . . , N, i.e. the chemical potential
corresponds to the energy levels of a linear chain with hop-

ping
√

t2 −Δ2. The case μ = 0 and t2 = Δ2 is included in
equation (F17).

Further, the determinant of a Kitaev chain with odd number
of sites is zero if μ = 0 for all values of Δ and t.

Appendix G. The zero energy eigenstates

The presence of zero energy modes is marked by det (HKC) =
0 and a natural question is to investigate their topological
character, be it trivial or non-trivial. Hence, we have first to
obtain these states. We use here again the SSH-like basis, e.g.
the Hamiltonian from equation (23) for μ �= 0. We keep the
notation for the eigenvector �ψ =

(
�vα, �vβ

)T
with

�vα =
(
x1, y1, x2, y2, . . . , xN/2, yN/2

)T
,

�vβ =
(
X1, Y1, X2, Y2, . . . , XN/2, YN/2

)T
,

for even N, but unlike in the previous calculation both SSH-
like chains are coupled now. We consider first N even, because
the odd N solutions have the same shape, as it turns out later.
Further, we derive the general eigenvector problem includ-
ing even non zero modes. Solving

(
λ 𝟙2N −HSSH

KC

)
�ψ = �0

translates to

Hα �vα + τ �vβ = λ�vα,

Hβ �vβ + τ † �vα = λ�vβ.

The reason to keep λ first inside the calculation is the diago-
nal structure of τ , τ † and 𝟙N as well as the entry structure of
�vα and �vβ , which enables us to identify easily the new con-
tributions of τ �vβ and τ † �vα in comparison to the μ = 0, i.e.
τ = 0, case from appendix C. The difficulty to write down(
λ 𝟙2N −HSSH

KC

)
�ψ = �0 reduces to taking the correct signs of

the μ terms. We have to solve (l = 1, . . . , N − 1)

b xl+1 − a xl + iμYl = λ yl, (G1)

a yl+1 − b yl − iμXl+1 = λ xl+1, (G2)

a y1 − iμX1 = λ x1, (G3)

−a x N
2
+ iμYN

2
= λ y N

2
, (G4)

from Hα �vα + τ �vβ = λ�vα and

aXl+1 − bXl − iμ yl = λYl, (G5)

bYl+1 − aYl + iμ xl+1 = λXl+1, (G6)

bY1 + iμ x1 = λX1, (G7)

−bX N
2
− iμ y N

2
= λYN

2
, (G8)

fromHβ �vβ + τ † �vα = λ�vβ . Extending the sequences xl, yl,Xl

andYl backwards leads to simplifications in the open boundary
conditions

y0 = x N
2 +1 = Y0 = X N

2 +1 = 0.

As we see from the particle–hole operator, see equation (79),
an MZM requires either fully real or fully imaginary entries,
which is not true for a generic solution of the eigenvector sys-
tem equations (G1)–(G8) of the Kitaev Hamiltonian forλ �= 0.
Thus, zero energy is essential for an MZM.

Zero energy has one advantage, because the chiral partner
of a zero mode is itself a zero mode and superpositions of both
will simplify the eigenvector problem even more. Acting with
C from equation (80) on �ψ, all yl (Xl) go into −yl (−Xl), while

all xl (Yl) remain the same. Hence, �ψA :=
(
�ψ + C �ψ

)
/2 reads

�ψA =
(

x1, 0, x2, 0, . . . , x N
2

, 0
∣∣∣ 0,Y1, 0,Y2, . . . , 0, YN

2

)T
,

and ‘|’ marks the boundary of both SSH-like chains. Similar
�ψB :=

(
�ψ − C �ψ

)
/2 is

�ψB =
(

0, y1, 0, y2, . . . , 0, y N
2

∣∣∣X1, 0,X2, 0, . . . , X N
2

, 0
)T

.

As we see, we decomposed �ψ into �ψA,B. The decomposition
is optional, but �ψA (�ψB) has only non zero weight on A type
(B type) Majorana positions γA

j (γB
j ) in the SSH-like basis, as

depicted in figure 10. Thus, �ψA obeys (S+)

b xl+1 − a xl + iμYl = 0
bYl+1 − aYl + iμ xl+1 = 0

Y0 = x N
2 +1 = 0

⎫⎬
⎭ (S+),

while �ψB satisfies (S−)

a yl+1 − b yl − iμXl+1 = 0
aXl+1 − bXl − iμ yl = 0

y0 = X N
2 +1 = 0,

⎫⎬
⎭ (S−),

and l runs from 1 to N − 1. As we see, (S+) turns into (S−)
by exchanging a’s and b’s, μ into −μ and the standard letters
into the calligraphic ones. Thus, we need only to solve one set
of equations and the solution of the second follows immedi-
ately.
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We focus on (S+) and we ignore the index limitations
during the following calculation. Decoupling leads to

b2 Yl+1 =
(
2 ab − μ2

)
Yl − a2 Yl−1, (G9)

b2 xl+1 =
(
2 ab − μ2

)
xl − a2 xl−1, (G10)

Fibonacci polynomials [36–38]. The Binet form needs initial
values and we have to think about the number of free entries
we have here. These degrees of freedom are given by the
dimension of the zero energy subspace, i.e. the number of zero
energy states. So far, the chiral symmetry implies their pair-
wise presence, but not their absolute quantity. Each zero
of the determinant is twice degenerated, as we see from
equation (F8). Hence, we have in total only two zero energy
modes and each has one unspecified entry. We choose x1 as a
fixed number.

The naive choice would be to take x1, x2, Y1 and Y2 as ini-
tial values, where the last three are expressed in terms of x1.
Instead we use the l = 0, 1 expressions and introduce x0 via
(S+)

b x1 − a x0 + iμY0 = 0,

because x1 is our choice and Y0 = 0. We find x0 = x1b/a. The
term y1 follows from (S+)

bY1 − aY0 + iμ x1 = 0,

which reduces to y1 = −iμx1/b.
The Binet form follows again from a power ansatz xl ∝ zl.

The fundamental solutions for both sequences are

z1,2 =
2 ab − μ2 ±

√
(2 ab − μ2)2 − 4 a2 b2

2 b2
.

We use equation (F17) to get 2 ab − μ2 = −2ab cos
(

2 nπ
N+1

)
and we obtain

z1,2 =
−2ab cos

(
2 nπ

N+1

)
± 2i ab sin

(
2 nπ

N+1

)
2 b2

.

Finally, we have

z1,2 = −a
b

{
e−2iθn

e2iθn
,

with θn := nπ/(N + 1). The general solution is given by the
superposition of z1 and z2

xl = c1 zl
1 + c2 zl

2,

and we find both coefficients with x1 and x0 to be

(
c1

c2

)
=

x1

z2 − z1

⎛
⎜⎝

b
a

z2 − 1

1 − z1
b
a

⎞
⎟⎠ .

With this xl becomes

xl =
x1

z1 − z2

[
zl

1 − zl
2 −

b
a

z1z2

(
zl−1

1 − zl−1
2

)]
.

Using the expressions for z1,2, we find

xl = x1
sin(2 θnl) + sin[2 θn(l − 1)]

sin(2 θn)

(
−a

b

)l−1
,

or in the most compact form

xl = x1
sin[θn(2l − 1)]

sin(θn)

(
−a

b

)l−1
. (G11)

Similar, we obtain Yl

Yl = Y1
zl

2 − zl
1

z2 − z1
= x1

(
−iμ

b

)
sin(2 θn l)
sin(2 θn)

(
−a

b

)l−1
, (G12)

which simplifies to

Yl = −x1 sign(t +Δ)
sin(2 θn l)

sin(θn)

(
−a

b

) 2l−1
2

,

where−a/b is always positive since t2 � Δ2. The last step is to
check if the open boundary conditions are satisfied. Obviously
Y0 = 0 holds and we get for x N

2 +1 the form

x N
2 +1 ∝ sin

{
θn

[
2

(
N
2
+ 1

)
− 1

]}
= 0.

Hence, the vector �ψA is an eigenvector of the Kitaev BdG
Hamiltonian. The vector �ψB has the entries

Xl = X1
sin[θn(2l − 1)]

sin(θn)

(
−b

a

)l−1

, (G13)

and

yl = −X1 sign(t −Δ)
sin(2 θn l)

sin(θn)

(
−b

a

) 2l−1
2

(G14)

where X1 is free to choose. The case of odd N is similar. We
use

�vα =
(

x1, y1, x2, y2, . . . , x N−1
2

, y N−1
2

, x N+1
2

)T
,

�vβ =
(
X1, Y1, X2, Y2, . . . , X N−1

2
, YN−1

2
, X N+1

2

)T
,

and �ψ =
(
�vα, �vβ

)T
. The vectors �ψA,B =

(
�ψ ± C�ψ

)
become

now

�ψA =
(

x1, 0, x2, 0, . . . , x N+1
2

∣∣∣ 0,Y1, 0,Y2, . . . , 0, YN−1
2

)T
,

(G15)

�ψB =
(

0, y1, 0, y2, . . . , 0, y N−1
2

∣∣∣X1, 0,X2, 0, . . . , X N+1
2

)T
.

(G16)

As we see, we have to respect different index limitations for
x j (X j) and Yi (yi), but apart from this small change every-
thing else remains as in the even N case. The vector �ψA obeys
now

b x j+1 − a x j + iμY j = 0
bYi+1 − aYi + iμ xi+1 = 0

Y0 = YN+1
2

= 0

⎫⎬
⎭ (S̃+),
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with j = 1, . . . , (N − 1)/2, i = 1, . . . , (N − 3)/2 and �ψB satis-
fies

aX j+1 − bX j − iμ y j = 0
b yi+1 − b yi − iμXi+1 = 0

y0 = y N+1
2

= 0

⎫⎬
⎭ (S̃−).

The only important change compared to the even N case are the
new open boundary conditions, while the Fibonacci character
remains. Hence, we ignore the index limitation during the cal-
culation of those entries as in the even N case and we get the
same results for xl, Xl, yl and Yl, see equations (G11)–(G14).

The boundary conditions are satisfied, since y0 = Y0 = 0,

YN+1
2

∝ sin

(
2 θn

N + 1
2

)
= sin[θn (N + 1)] = 0,

and y N+1
2

= 0. A last check for the odd N case is done by

choosing n = (N + 1)/2, i.e. θn = π/2, which leads back to
the old μ = 0 limit. Applying θn → π/2 on xl leads to

xl = x1

(a
b

)l−1
= x1

(
Δ− t
Δ+ t

)l−1

,

after some steps, while all Yl ∝ μ are zero. Similar we find Xl

from xl upon changing a with b, while yl = 0 for all l. Hence,
we recover our result for the α (β) chain, see equations (71)
and (72).

The remaining questions is whether these zero energy
modes are Majorana zero modes or not. The use of the par-
ticle hole operator in the SSH-like basis from equation (79),
i.e. complex conjugation, reveals that the expressions xl/x1,
Yl/x1, Xl/X1 and yl/X1 are always real quantities, for both
even and odd N. Thus �ψA (�ψB) is an MZM if x1 (X1) is either
real or pure imaginary.

The MZM mode �ψA (�ψB) has non-zero weight on γA
j (γB

j ).
Superpositions of both vectors can be MZM too if the coef-
ficients are chosen properly. For example �ψ = �ψA + �ψB has
no zero entry. Hence, it is a mixed type MZM (for the correct
choice of x1 and X1).
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