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Abstract
The nature of superconductivity in monolayer transition metal dichalcogenides is still under
debate. It has already been argued that repulsive Coulomb interactions, combined with the disjoint
Fermi surfaces around the K, K ′ valleys and at the Γ point, can lead to superconducting instabilities
in monolayer NbSe2. Here, we demonstrate the two-bands nature of superconductivity in NbSe2. It
arises from the competition of repulsive long range intravalley and short range intervalley
interactions together with Ising spin–orbit coupling. The two distinct superconducting gaps, one
for each spin-orbit split band, consist of a mixture of s-wave and f -wave components. Their
different amplitudes are due to the difference between the normal densities of states of the two
bands at the Fermi level. Using a microscopic multiband BCS approach, we derive and
self-consistently solve the gap equation, demonstrating the stability of nontrivial solutions in a
realistic parameter range. We find a universal behavior of the temperature dependence of the gaps
and of the critical in-plane field which is consistent with various sets of existing experimental data.

1. Introduction

In conventional materials the dominance of repuls-
ive Coulomb interactions is in general detrimental
to superconductivity. Nevertheless, it has long been
known that, accounting for long range oscillatory
contributions in some fermionic systems, super-
conductivity can still arise by the so-called Kohn–
Luttinger mechanism [1]. It is also well recognized
that Coulomb interactions are strongly enhanced in
layered systems like the cuprates or iron-pnictides [2],
and that they might be at the origin of superconduct-
ivity in twisted bilayer graphene and other novel two-
dimensional materials [3].

In this context, unconventional superconductiv-
ity in two-dimensional transition metal dichalcogen-
ides (TMDCs), systems with fragmented Fermi sur-
face, has attracted much attention in recent years.
With focus on the observation of superconductivity in
heavily doped molybdenum disulfide (MoS2) [4–6],
Roldán et al [7] have suggested that the competi-
tion between short and long range processes, both of
them repulsive, can lead to an effective attraction res-
ulting in superconducting pairing. Later theoretical
works have further focused on various scenarios for

possible mechanisms of superconductivity and non-
trivial topological phases in this system [8–10].

While MoS2 becomes superconducting after dop-
ing, monolayer NbSe2 is an intrisic van der Waals
superconductor. Due to the large Ising spin–orbit
coupling (SOC), locking Cooper pairs out-of-plane,
it exhibits critical in-plane magnetic fields well above
the Pauli limit [11]. Recently, Shaffer et al [12]
have proposed a detailed phase diagram of possible
unconventional superconducting phases of mono-
layerNbSe2 upon application of an in-planemagnetic
field and with the addition of Rashba SOC. The pres-
ence of amagnetic field applied in a direction perpen-
dicular to the spin–orbit fields is also thought to cause
the formation of equal-spin triplet pairs in TMDCs
with natural singlet pairing [13–16].

Despite the many predictions of exotic phases
by tuning doping or magnetic fields, little theor-
etical attention has been put on the intrinsic two-
bands character of the superconductivity in mono-
layer TMDCs, the topic of this work. It arises from the
large Ising SOC in combination with short and long
range Coulomb repulsion. In most of currently avail-
able works on superconducting pairing in TMDCs,
whether due to repulsive [9, 12] or attractive [8, 14,
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17, 18] interactions, the bands at the Fermi level are
considered to be identical, with the same density of
states (DOS), and at most shifted by a constant spin–
orbit splitting. A notable exception is [15], which con-
siders the full tight-binding band structure of NbSe2,
although with pairing generated by on-site attractive
interaction. In our work we take into account the dif-
ferences between the DOS and Fermi velocity of the
two bands, and show that they lead naturally to two
gaps with different magnitude.

We focus on monolayer NbSe2, but the ideas
exposed in this work are rather general and can be
applied to characterize superconductivity in other van
der Waals materials, or in systems with two disjoint
(also spin-split) Fermi surfaces, in presence of com-
peting interactions—repulsive, attractive, or a mix-
ture of both.

Specifically, we expand the original idea of Roldán
et al [7] to include the effects of Ising SOC and
later also of an in-plane magnetic field on the super-
conducting phase transition. Starting from repuls-
ive interactions and disjoint Fermi surfaces around
the K and K′ points in NbSe2, we find two distinct
superconducting gaps, one for each spin–orbit split
band, both consisting of a mixture of s-wave and
f -wave components. Using a microscopic mult-
iband Bardeen–Cooper–Schrieffer (BCS) approach,
we derive and self-consistently solve the coupled gap
equations, demonstrating the stability of nontrivial
solutions in a realistic parameter range. Like in stand-
ard single band BCS and similar to other multiband
approaches [19–21], we find a universal behavior of
the mean gap vs. temperature.

We neglect the contribution of the Fermi surface
around the Γ point because, with repulsive interac-
tions, it is incapable of generating the superconduct-
ing pairing by itself and has to rely on the presence
of the K/K ′ pockets [12]. The latter two are there-
fore sufficient to capture the qualitative features of
the pairing generated by competing repulsive pro-
cesses. Here, we consider the screening contributed
by the Γ pocket to be taken into account implicitly,
by adjusting our model’s parameters to the experi-
mentally measured value of∆. Where it is warranted,
we return to the discussion of the Γ pocket in the
following sections.

Our model is thus directly applicable to the
electron-doped semiconducting TMDCs. Because the
NbSe2 is by far the most explored experimentally, we
use it as our focal point.

To date, the possibility to produce high-quality
monocrystals with few or even one single layer by
mechanical exfoliation or molecular beam epitaxy
[11, 18, 22–25], makes it possible to get access to
the pairing mechanism, and to some of the uni-
versal features of superconductivity in monolayer
NbSe2 discussed in this work. Moreover, we com-
pare the predictions of our model with various sets
of experimental data, finding good agreement in the

temperature dependence of the gaps [26] and of the
critical in-plane field [11] also away from Tc. The
presence of two gaps is further in agreement with the
recent observation of a collective Leggett mode [26].

The paper is structured as follows. In section 2 we
briefly recall the band structure of NbSe2 and present
aminimal low energymodel which captures themain
features around the Fermi energy. In section 3 the
coupled gap equations are obtained and the predicted
temperature dependence of the gaps is investigated
for two parameter sets. The impact of an in-plane
magnetic field and the dependence of the critical field
on temperature are discussed in section 4. Finally,
conclusions are drawn in section 5. Some of the
detailed derivations are deferred to the appendix.

2. Band structure andminimal model for
monolayer NbSe2

Monolayer TMDCsMX2 aremade up of a single layer
ofM transitionmetal atoms sandwiched between two
layers ofX chalcogen atoms. Themetal and chalcogen
atoms can enter in various combinations, whichmake
them very attractive for applications [27]; supercon-
ductivity has been largely investigated inTMDCswith
M = Mo, Nb and X = S, Se [4–6, 11, 28]. As shown
in figure 1(a), each M atom binds to the six nearest
X atoms that together form the trigonal prismatic
unit cell of the lattice. Projecting these layers onto a
plane yields a honeycomb lattice similar to the one
found in graphene. The primitive unit cell of the M

sublattice has the area Ω=
√
3
2 a2 = 10.28Å2 with the

lattice constant a= 3.445Å. The dispersion relation
of monolayer NbSe2 along high symmetry lines is
shown in figure 1(b). It has been obtained within a
tight-binding (TB) model where only the three orbit-
als dz2 , dx2−y2 and dxy of the metal atom are retained
[17, 29, 30], with the TB parameters for NbSe2 taken
from [17]. The strong atomic SOC due to the heavy
transition metal M is included in the band structure
calculation. Since the lattice shown in figure 1(a) pos-
sesses an out-of-plane mirror symmetry, the crystal
field is restricted to the in-plane direction of the sys-
tem. Taking into account that the electronic motion
is confined to the 2D lattice, the effective SOC field
felt by the moving charges also points in the out-
of-plane direction. Consequently, the electron spin
is also quantized along this axis and remains a good
quantum number [6]. This kind of SOC is known
as Ising spin–orbit coupling [11]. Its effect is to
remove spin degeneracy of the bands by inducing a
momentum dependent energy shift. The latter is very
prominent in the valence bands near the+K and−K
points (or simply K and K′) related by time-reversal
symmetry. This is due to the fact that the d-bands
there are predominantly given by the linear com-
binations dx2−y2 ± idxy with angular momentum L=
±2ℏ. Along the high symmetry ΓM line the valence
band is spin degenerate.
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Figure 1. Lattice, band structure and Brillouin zone of
NbSe2. (a) Top view of the lattice and the trigonal prismatic
unit cell. (b) The six spin-resolved bands of NbSe2 closest
to the Fermi energy EF. They have been obtained within a
tight-binding model involving three d orbitals of the Nb
atoms. The Ising spin–orbit coupling induces a large
splitting of the valence bands at the K and K′ points.
(c) The Brillouin zone of NbSe2, with spin-resolved Fermi
surface pockets near the K,K ′ and Γ points. In (b) and
(c) red/blue denotes spin up/down band (b) and Fermi
surface (c). The bands from theM to the Γ point are spin
degenerate.

When viewed within the rhomboidal Brillouin
zone, the fragmentation of the Fermi surface of
NbSe2, which will be crucial in our discussion of
unconventional superconductivity, becomes appar-
ent. As depicted in figure 1(c), the Fermi surface is
composed of hole pockets around theK andK′ valleys
and the Γ point. The spin-resolved pockets around K
and K′ display a trigonal warping and are related by
time-reversal symmetry.

2.1. A low energy minimal model for NbSe2
Superconductivity is a low energy phenomenon ori-
ginating from the binding of electrons residing close
to the Fermi energy. Hence, in the following we will
only consider the valence bands and will focus on the
features close to the Fermi energy. Furthermore, as
the mechanism we shall discuss strongly relies on the
existence of disconnected Fermi surfaces related by
time reversal symmetry, we shall focus on the disper-
sion around the K and K′ valleys and disregard the
contribution of the Γ Fermi surface. The main reason
for this omission is that the Γ pocket does not con-
tribute qualitatively to the physics discussed here. The
mechanism by which two competing repulsive pro-
cesses can generate effective pairing is already active in
the presence of K and K′ pockets. Any pairing gener-
ated on the Γ Fermi surface would be due to the ana-
log of the intervalley scattering, fromΓ toK/K ′. Since
the bands at the Γ pocket are closer and more sim-
ilar than at the K,K ′ pockets, the gap at the Γ pocket
is the most sensitive to the magnetic field—in fact,
its dependence on the magnetic field has been linked

to the experimentally observed twofold symmetry of
the superconducting gap in few-layer NbSe2[25]. We
shall incorporate the Γ pocket when investigating
∆(B), but this will be the subject of a future work.

Our aim is to develop a minimal low energy
model for superconductivity inNbSe2. Hence, instead
of using the full tight-binding models mentioned
above, we restrict the following discussion to a hyper-
bolic fit to the dispersion in the two valleys. We chose
the massive Dirac bands instead of the usual para-
bolic ones, with spin-dependent parameters, in order
to account for their different slopes and DOSs which
lead to the presence of two different gaps. The fit-
ting parameters are obtained from two tight-binding
parametrizations [17, 30], as discussed below. For
simplicity, the trigonal warping far from the Dirac
points is neglected. Then the hyperbolic dispersion
for a particle of spin σ and momentum k measured
from the Dirac point τK, with τ =±, is written as

ετσ(k) = ϵ0τσ +mτσ −
√
(ℏvF,τσ)2k2 +m2

τσ. (1)

In the above equation vF,τσ is the Fermi velo-
city, mτσ is a mass-like parameter and ϵ0τσ the upper
limit of the band, i.e. the energy directly at the τK
point. Since time-reversal symmetry is preserved by
the SOC, it holds ετσ(k) = ε−τ−σ(−k) := ετ̄ σ̄(k̄),
where we used the shorthand notation −k := k̄,
−τ := τ̄ and −σ := σ̄. This symmetry allows us to
restrict our considerations to the K valley by intro-
ducing the pseudospin indices

i=

{
1 for (K,↑)
2 for (K,↓) , ī=

{
1̄ for (K ′,↓)
2̄ for (K ′,↑) .

(2)
Here, i= 1(2) refers to the upper (lower) band

in the K valley, while ī= 1̄(2̄) are the time-reversed
upper (lower) bands in the K′ valley. With this nota-
tion the energy relative to the chemical potential µ in
the K valley can be written as

ξi(k) = εi(k)−µ= ξ0i +mi −
√
(ℏvF,i)2k2 +m2

i ,

(3)
where ξ0i = ϵ0i −µ.

2.2. Density of states
Making use of the approximate band structure
equation (3), we can get to an expression for the band
resolved DOS per unit area at the K-Dirac cone. We
find

ρi(ε) :=
1

NΩ

∑
k

δ(ε− εi(k)) = (ρFi − diε)θ(ϵ
0
i − ε) ,

(4)

whereN is the number of Nb atoms in the lattice and
Ω the area of the unit cell, with the factor of the lin-
ear term di = 1/(2π(ℏvF,i)2) and the constant term

3
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Figure 2. Density of states (DOS) and energy bands in the
minimal model. (a) DOS in the K valley associated to the
spin-orbit split valence bands. The colored regions depict
the DOS ρ1,2,TB obtained numerically from the
tight-binding model. The solid lines are the linear fits
ρ1,2,fit to those DOS close to the Fermi level, used to
estimate the parameters of the effective model. Dashed lines
mark the linear fits to the DOS higher on the Dirac cone,
for comparison. (b) The tight-binding and the effective
model dispersion and (in the inset) the Fermi surfaces in
the K valley, with kx measured with respect to K. Solid lines
show results for the effective model, the dotted curves
display the numerical tight-binding bands with the B
parametrization [17].

ρFi = (ϵ0i +mi)di := ϵ̃idi. Hence, the DOS directly at
the chemical potential is given by

ρi(µ) = (ρFi − diµ) θ(ϵ
0
i −µ) = (ξ0i +mi)di θ(ξ

0
i ).
(5)

We have two guiding principles in constructing
the minimal model:

(a) The DOS for each band must be the same as
in the tight-binding model within the relevant
energy range around the Fermi level.

(b) The spin-orbit splitting between the two bands
at the Fermi level should be correct (this will be
important when we consider the evolution of the
gap in magnetic field).

In the following we set the zero of the energy at
the Fermi level of the normal system. We can fix the
free parameters ϵ̃i and vF,i of the minimal model by
requiring that the DOS in equation (4) assumes the
value ρFi at the Fermi level and its slope is determ-
ined by di. One of the masses is chosen arbitrarily to
be m1 = 0.1 eV. The value of m2 (and hence also the
parameter ϵ02 = ϵ̃2 −m2) is set by fixing the values of
the spin orbit splitting at the Fermi level. Explicitly,
we require

∆SOC := ε1(kF,1)− ε2(kF,1) =−ε2(kF,1) , (6)

where kF,i are the Fermi momenta of the two bands
obtained in full tight-binding, satisfying εi(kF,i) = 0.
The value of∆SOC is taken from the tight-binding cal-
culation as an average between the spin–orbit split-
ting in the ΓK and in the KM direction. The res-
ults of the fitting procedure are illustrated in figure 2

Table 1. Parameters from the linear fit to the DOS and the SOC
splitting at the Fermi energy. Units for ρFi, di and ℏvF,i are
eV−1Å−2, eV−2Å−2 and eVÅ, respectively. The values of
spin–orbit splitting at the Fermi level are∆A

SOC = 0.0253 eV and
∆B

SOC = 0.092 eV.

set i ρFi di ϵ0i ϵ̃i ℏvF,i mi

A[30] 1 0.0385 0.09 0.328 0.428 1.33 0.1
2 0.046 0.13 0.199 0.354 1.106 0.155

B[17] 1 0.0314 0.0583 0.439 0.539 1.652 0.1
2 0.03 0.0481 0.209 0.624 1.819 0.415

where the tight-binding bands and DOS were calcu-
lated using the parameter set given in [17], denoted
in the following as set B. An alternative set [30] (plots
not shown) is denoted as setA. The resultingminimal
model parameters are shown in table 1.

3. Two-bands superconductivity and
coupled gap equations

We now turn to the mechanism inducing the two-
bands superconducting phase in NbSe2. For this
purpose we will focus on the two partially occu-
pied bands around the Fermi level which give rise
to the spin separated Fermi surfaces at the K and
K′ points discussed in the previous section. Instead
of the conventional pairing mechanism that leads
to the formation of Cooper pairs, i.e. the phonon-
mediated attraction of two electrons, we will now
consider the Coulomb repulsion of such electrons
and hence an unconventional pairing. While phon-
ons are believed to contribute the dominant mech-
anism for bulk NbSe2 [31–34], this should not be
the case for the monolayer [26]. Coulomb inter-
actions are not well screened in a monolayer, and
hence short range and long contributions should be
included.

According to these considerations, we start from
an interacting Hamiltonian with conventional, spin
independent, Coulomb interaction. By retaining
only scattering processes among time-reversal related
Cooper pairs, the total Hamiltonian is the sum of a
single particle and an interaction part,

Ĥtot = Ĥsp + Ĥint. (7)

The single particle contribution follows from the
minimal model from the previous section and reads

Ĥsp =
∑
στk

ετσ(k)̂c
†
kτσ ĉkτσ, (8)

with the dispersion provided by equation (1). The
interaction Hamiltonian [7]

Ĥint =
1

2

∑
στkk ′

[
V intra
kk ′ ĉ †

kτσ ĉ
†
k̄τ̄ σ̄

ĉk̄ ′τ̄ σ̄ ĉk ′τσ

+V inter
kk ′ ĉ †

k̄τ̄σ
ĉ †
kτσ̄ ĉk̄ ′τ̄ σ̄ ĉk ′τσ

]
(9)

4



2D Mater. 10 (2023) 025008 S Hörhold et al

Figure 3. Superconductivity in monolayer TMDCs can
arise from the interplay of repulsive long and short range
interactions. On the left, a typical intravalley scattering
process which involves small momentum transfer±q⃗ is
shown. On the right, intervalley scattering with large
momentum transfer±q⃗ is depicted. The scattered Cooper
pairs are related by time reversal and hence reside in
different valleys.

accounts for both intravalley and intervalley scatter-
ing processes. For an electron with momentum k
and spin σ that is located at the K valley, its time-
reversal partner will be located at K′ with oppos-
ite momentum. Thus, as shown in figure 3, there
are now two possible scattering mechanisms, medi-
ated by V intra

kk ′ and V inter
kk ′ , that can occur between the

members of a pair. For an intravalley process the
scattered electrons stay within their initial valley in
k-space, i.e. the valley index will be conserved. This
means that the exchanged momentum q= k− k ′ is
small, which corresponds to a long-ranged interac-
tion in real space. The intervalley scattering on the
other hand describes a short ranged Coulomb inter-
action with a large exchanged momentum of the
order of 2|K|. In this process the electrons swap their
valley and hence τ flips its sign. Note that since
the Coulomb interaction conserves spin, the inter-
valley scattering transforms a Cooper pair residing
on the inner (outer) Fermi surface into a pair resid-
ing on the outer (inner) Fermi surface. This process
thus couples the two condensates. The two sums in
equation (9) run over a shell around the Fermi sur-
face whose thickness will be denoted as Λ. In fact, as
in the conventional BCS theory, the restriction of the
sums in momentum space to time-reversal partners
is appropriate at low energies where only electrons
in the vicinity of the Fermi energy are involved [35].
For a phonon-mediated interaction the shell thick-
ness is in the order of the Debye energy ℏωD. Here
we shall assume a shell thickness also in the meV
range.

Other possible instabilities in this system include
charge and spin density waves. Experimentally, no
signatures of spin density waves or magnetic order
have been observed in NbSe2. The charge density
wave develops in monolayer NbSe2 at TCDW ∼ 33K
[36, 37], which is far above the superconducting Tc ∼
2K. Moreover, the charge density wave does not gap
the Fermi surface [38]. Theoretically, without Fermi
surface nesting both density wave instabilities have
been found to be weaker than the superconducting

one [12], and the role of the Fermi surface nesting
in NbSe2 monolayers is still an open question. How-
ever, calculations for bulk systems suggest that a nest-
ing of Fermi surfaces does not lead to charge dens-
ity instabilities [39]. Therefore we consider neither
charge nor spin density waves in our low energy
calculation.

3.1. Mean field Hamiltonian
Due to the complexity of the scattering pro-
cesses described by the interaction Hamiltonian
equation (9), we simplify the problem by performing
a mean field approximation [35] on both interaction
terms. By introducing the pairing functions

∆intra
τσ (k) =−

∑
k ′

V intra
kk ′ ⟨̂ck̄ ′τ̄ σ̄ ĉk ′τσ⟩,

∆ inter
τσ (k) =−

∑
k ′

V inter
kk ′ ⟨̂ck̄ ′τ̄σ ĉk ′τσ̄⟩ , (10)

and bymaking use of the fermionic anticommutation
relations, we can express the interaction Hamiltonian
in the compact form

Ĥmf
int = − 1

2

∑
kτσ

[
∆τσ(k)̂c

†
kτσ ĉ

†
k̄τ̄ σ̄

+(∆τσ(k))
∗ĉk̄τ̄ σ̄ ĉkτσ

]
,

with the global gaps

∆τσ(k) = ∆intra
τσ (k)−∆ inter

τσ (k). (11)

In equation (11) irrelevant constant terms, encap-
sulated in an overall contribution C, have been omit-
ted. Notice that the hermiticity of the interaction
Hamiltonian equation (9) together with the fermi-
onic nature of the electronic operators ensure the
property ∆τ̄ σ̄(k̄) =−∆τσ(k), i.e. that the gap func-
tions are odd under time reversal. This property
allows us to write the total grandcanonical mean field
Hamiltonian in terms of the pseudospin index (i, ī)
introduced in the previous section

Ĥmf −µN̂−C=
∑
k,i=1,2

ξi(k)
(
ĉ †
ki ĉki + ĉ †

k̄ ī
ĉk̄ ī

)
−
∑
k,i=1,2

(
∆i(k)̂c

†
ki ĉ

†
k̄ ī
+ h.c.

)
,

(12)

where the dispersion relative to the chemical poten-
tial ξi(k) was given in equation (3). It is noteworthy
that for each of the two pseudospins, (1, 1̄) and (2, 2̄),
the above expression has the BCS form, where the col-
lective index i plays the role of the conventional spin.
Thus, themean fieldHamiltonian can be readily diag-
onalized by a conventional Bogoliubov transforma-
tion accounting for the full quasiparticle spectrum of
the two-bands superconductor.

5
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3.2. Bogoliubov transformation and coupled gap
equations
For a quadratic Hamiltonian like in equation (12) the
Bogoliubov transformation has the form(

γ̂ki
γ̂ †
k̄ ī

)
=

(
uki −vki
v∗ki u∗ki

)(
ĉki
ĉ †
k̄ ī

)
, |uki|2 + |vki|2 = 1 ,

(13)
where the condition on the sum of the coefficients vki
and uki ensures the proper fermionic anticommuta-
tion relations of the quasi-particle operators γ̂ki. By
choosing for the coefficients the conventional BCS
form

|uki|2 =
1

2

(
1+

ξi(k)

Ei(k)

)
, |vki|2 =

1

2

(
1− ξi(k)

Ei(k)

)
,

(14)

with Ei(k) =
√(

ξi(k)
)2

+
∣∣∆i(k)

∣∣2, we obtain the
diagonalized mean-field Hamiltonian

Ĥmf −µN̂−C=
∑
k,i

Ei(k)
(
γ̂ †
ki γ̂ki + γ̂ †

k̄ ī
γ̂k̄ ī

)
. (15)

The simple and elegant expression above allows
one to evaluate all the thermodynamic properties of
the two-bands superconductor.

Of primary interest for us are the self-consistent
equations for the gaps ∆1 and ∆2. In particular,
we are asking if nontrivial solutions exist, and if
they are compatible with a realistic parametriza-
tion for NbSe2 or for other Ising superconducting
TMDCs. Bogoliubov operators describe excitations in
the superconductor in terms of an ensemble of non-
interacting quasiparticles. The equilibrium occupa-
tion of the quasiparticle states is thus provided by the
Fermi function according to ⟨γ̂ †

ki γ̂ki⟩= f(Ei(k)), and

⟨γ̂kiγ̂†
ki⟩= 1− f(Ei(k)). Starting from the definition

of the gaps in equation (11) and expressing the aver-
ages in∆intra/inter

τσ (k) in terms of expectation values of
Bogoliubov operators, yields for the two-component
vector ∆(k) = (∆1(k),∆2(k))T the coupled set of
equations

∆(k) =−
∑
k ′

M(k ′)∆(k ′) , (16)

M(k ′) =

(
V intra
kk ′ χ1(k ′) −V inter

kk ′ χ2(k ′)
−V inter

kk ′ χ1(k ′) V intra
kk ′ χ2(k ′)

)
.

(17)

The functions χi(k ′) incorporate the Fermi stat-
istics of the quasiparticles and are given by

χi(k) = χi(ξi(k)) =
1

2Ei(k)
tanh

(
βEi(k)

2

)
, (18)

with β = 1/kBT, kB Boltzmann constant and T the
temperature. Once the solution for the gaps within
the K valley is found, the gaps within the K′ valley
follow from ∆ī(k) =−∆i(−k). In the following we
shall refer to ∆1 and ∆2 as the gaps of the outer and
inner Fermi surfaces, respectively, of the K valley.

3.3. Temperature dependence of the inner and
outer gaps
Our first task will now be to find nontrivial solutions
of the gap equation (16). For general k-dependent
interaction potentials this is a quite difficult task, as
it is already the case for the conventional BCS gap
equation. Here the off-diagonal terms, introduced by
a non-vanishing intervalley potential V inter

kk ′ , give rise
to a coupling between the ∆1(k) and ∆2(k) gaps
which further complicates matters. For this reason we
shall focus on constant interactions in the following
discussion and remember that V intra

kk ′ ,V inter
kk ′ describe

long- and short-ranged parts, respectively, of the
Coulomb repulsion in real-space. Qualitatively, these
potentials can be conveniently described in terms of
the screened density-density interaction [7]

U intra
kk ′ := V intra

kk ′ NΩ≈ 2πe2

ϵ(|k− k ′|+ qTF)
. (19)

In equation (19) ϵ is the dielectric constant of the
environment, and qTF = 2πe2ρ(µ)/ϵ the Thomas–
Fermi momentum which describes the screening of
the long-range tail of the Coulomb interaction. In
this case ρ(µ) = ρ1(µ)+ ρ2(µ) is the total DOS at
the Fermi level, given by the sum of both DOS in
equation (5), since we neglected contributions com-
ing from the Γ pockets. The additional screening
due to the electrons from the Γ Fermi surface would
modify the strength of U intra, but since U inter is
unknown, we compensate bymissing part ofU intra by
adjusting U inter.

The intervalley scattering is short-range, and the
dominant contribution to the local Coulomb inter-
action comes from the exchange interaction, between
electrons with opposite spin occupying the same
orbital. InNbSe2 it is enhanced by the localized nature
of the 4d orbitals of Nb, and wemodel it [7] by a con-
stant Hubbard-like term

U inter
kk ′ := V inter

kk ′ NΩ= Uinter. (20)

In equation (20), the quantityU inter is of the order
of the product (e2/2a)Ω, with a the interatomic dis-
tance and Ω the size of the unit cell. Although the
exact value of U inter is not known, it lies in the few
eV range [40].

The expression Uintra
kk ′ can further be simplified by

assuming that qTF is much larger than all of the con-
sidered exchangedmomenta |k− k ′| ∼ kF,i which are
of the order of the Fermi momentum for one of
the two bands. Note that this assumption can only
be justified for not too large ϵ which would other-
wise yield a rather small value for qTF. Here we shall
simply assume that this is indeed fulfilled. Hence, the
intravalley potential also assumes a constant form,

Uintra
kk ′ ≈ 2πe2

ϵqTF
=

1

ρ(µ)
≡ Uintra. (21)

6
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Due to the now constant interactions and the
fact that the right hand side of the gap equation in
equation (16) only depends on k via the two poten-
tials, the gap vectorwill be isotropicwithin each valley,
i.e.∆(k) =∆. Defining αi :=

1
NΩ

∑
kχi(k), the gap

equation can now be written in the compact form

M∆=

[
1+

(
Uintraα1 −Uinterα2

−Uinterα1 Uintraα2

)]
∆= 0.

(22)

Non-trivial solutions of the gap equation require
a vanishing determinant of thematrixM. By introdu-
cing the potential Uattr = (U2

intra −U2
inter)/Uintra, we

obtain

detM= UattrUinterα1α2 +Uintra(α1 +α2)+ 1= 0.
(23)

Since both αi’s and the potentials Uintra,Uinter are
positive, the above condition can only be fulfilled if
Uattr < 0, i.e. Uintra < Uinter, leading to an attractive
potential. Note that since the intervalley scattering
enters quadratically in the definition of Uattr, its sign
is not relevant here. Also, in the absence of intervalley
scattering, Uinter = 0, only the trivial solution ∆= 0
exists for repulsive intravalley interaction. The phase
diagram for various combinations of the signs and
relative strengths of the interactions is discussed in
section 3.4.

The sum over momenta in the definition of the
quantities αi can be evaluated by transforming it into
an energy integral

αi =
1

NΩ

∑
k

χi(k)

=

ˆ Λ

−Λ

dξ (ρi(µ)− diξ)χi(ξ)θ(ξ
0
i −Λ)

= ρi(µ)

ˆ Λ

−Λ

dξχi(ξ)θ(ξ
0
i −Λ), (24)

where the Heaviside function ensures that the integ-
ration interval is below the top of the valence bands.
Since we assume that Λ defines a small energy inter-
val around the Fermi energy, this requirement is auto-
matically satisfied. Usually in the computation of the
integral one would approximate the DOS ρi(ε) with
its value ρi(µ) at the Fermi level. Here, we naturally
only get contributions from the latter since the lin-
ear term in the DOS leads to an odd integrand which
vanishes upon integration.

Let us now for a moment consider NbSe2 with
a strongly shifted Fermi level, close to the top
of the valence bands. According to the definition
equation (5), the DOS at the Fermi level ρi(µ) van-
ishes if ξ0i < 0. We can thus differentiate between
two configurations which could possibly lead to finite
αi. In the first one, the chemical potential µ lies
between the top of the upper and the lower band

(ξ01 > 0, ξ02 < 0); in the second one µ is below the
top of both bands (ξ0i > 0). In the first scenario α2 =
0 and equation (23) leads to the familiar BCS gap
equation, however now with the repulsive interaction
Uintra > 0. As it is well-known, the BCS gap equation
allows non-trivial solutions only for attractive poten-
tials. Hence in this case the condition for finite gaps in
equation (23) is not fulfilled and equation (22) is only
solved by∆i = 0. This means that a superconducting
phase cannot exist for such range of chemical poten-
tials. Only the second scenario, where both interac-
tions can take place, is relevant for the further discus-
sion. Notice that this interdependence of the two gaps
implies that there exists a single critical temperature
Tc at which both gaps vanish. Its expression is derived
in analytical form below.

3.3.1. The critical temperature
At the critical temperature both gaps will have van-
ished and the superconducting state collapses. Hence,
we simply set∆i = 0 in αi(Tc). With the assumption
that the energy cutoff is much larger than the crit-
ical temperature, i.e. Λ≫ kBTc, the integrals can be
solved analytically

αi(Tc) = ρi(µ)

ˆ 2Λ/kBTc

0
dx

tanhx

x
≈−ρi(µ) ln

Tc

θ
,

(25)

with the characteristic temperature θ = 2eγΛ/πkB
and the Euler–Mascheroni constant γ≈ 0.577. Insert-
ing these expressions into equation (23), we find a
polynomial of degree two in ln Tc

θ whose solutions can
be used to obtain the critical temperature [41]

Tc

θ
= exp

[
1

2Uattr

1

r

(
1+

√
1− 2

Uattr

Uintra

r

ρ̄

)]
. (26)

Note that the DOS of the two bands ρ1(µ) and
ρ2(µ) only enter in the symmetrical combinations

1

r
=

1

ρ1
+

1

ρ2
, ρ̄=

ρ1 + ρ2
2

. (27)

When for similar DOS we approximate the value of
1/r by 2/ρ̄, the simplified expression for Tc reads

Tc ≃ θ exp

(
− 1

ρ̄(Uinter −Uintra)

)
. (28)

For repulsive interactions this result stresses again
the importance of the local repulsion winning over
the long-range one, encoded in our Uinter > Uintra

requirement. As we shall discuss in section 3.3.3,
depending on the signs and relative strengths of the
potentials we may have to choose the other root of
equation (23).

As the temperature is lowered below Tc, the gaps
start to grow and reach their maximal value at zero
temperature. Someproperties of the zero temperature
gaps are elucidated below.

7
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3.3.2. Zero temperature gaps
The gaps at absolute zero cannot be given in an expli-
cit closed form. One can, however, derive an equation
whose solution yields them. Here, instead of writ-
ing ∆i(T= 0), we simply keep the notation ∆i and
remember that these are actually the gaps at T= 0.
Then, as the temperature approaches zero, the hyper-
bolic tangent reaches one and the integral yielding
αi(T= 0) can again be computed analytically. Fur-
ther assuming Λ≫ |∆i|, one finds the asymptotic
form

αi = ρi

ˆ Λ/|∆i|

0
dx

1√
1+ x2

≈−ρi ln
|∆i|
2Λ

:=−ρixi ,

(29)

with the dimensionless quantity xi = ln |∆i|
2Λ . By mak-

ing use of the condition in equation (23) one can
first get to a relation between |∆1| and |∆2|. After-
wards, using the first or the second row of the gap
equation (22), leads to

Uinter exp

[
1

ρjUintra

1− ρiUintraxi
1− ρiUattrxi

]
+Uintra(1− ρiUattrxi)e

xi = 0. (30)

In the above equation the index j always refers
to the opposite of i, i.e. if i= 1 (2) then j= 2 (1).
When solving numerically the above expression in
terms of xi we can thus get to the absolute values of
both gaps∆i.

By considering only the leading terms in the gap
equation (22) we can find closed analytical expres-
sions for the average gap ∆̄ := (∆1 +∆2)/2 and the
gap difference δ∆ := (∆1 −∆2)/2. Using the DOS
difference δρ := (ρ1 − ρ2)/2 and the already intro-
duced average DOS ρ̄= (ρ1 + ρ2)/2, we can now
add and subtract the two rows of equation (22),
arriving at

∆̄≃ (Uintra −Uinter) (ρ̄∆̄+ δρδ∆) ln

∣∣∣∣ ∆̄2Λ
∣∣∣∣ ,

δ∆≃ (Uintra +Uinter) (ρ̄δ∆+ δρ∆̄) ln

∣∣∣∣ ∆̄2Λ
∣∣∣∣ ,

where we have approximated ln(∆i/(2Λ))≈
ln(∆̄/(2Λ)). Keeping only the leading ρ̄∆̄ term in
the first equation, we find∣∣∆̄∣∣≃ 2Λ exp

(
− 1

ρ̄(Uinter −Uintra)

)
. (31)

The expression for the average gap ∆̄ is highly
reminiscent of the standard BCS result, linking in the
same way the zero temperature gap and the critical
temperature in equation (28).

From the second equation, when using the result
of (31), we obtain

δ∆≃−∆̄
δρ

ρ̄

Uinter +Uintra

2Uintra
. (32)

The difference between the two gaps is propor-
tional to the difference between their normal DOS,
which is reasonable. A less intuitive property of δ∆
is that its sign is opposite to that of δρ—in con-
sequence, the band with larger ρi(µ) develops a smal-
ler gap. Mathematically this is caused by the negative
value of ln |∆̄/(2Λ)|. Physically, lower DOS in band i
means that the intravalley scattering, where both ini-
tial and final states are few, has lower amplitude than
the intervalley scattering, where the final states belong
to the band j, with higher DOS. The contrary is true
for the band j.

Note that both (31) and (32) were derived assum-
ing that ∆̄> δ∆. For an s-wave pairing the two
gaps have opposite signs (as will be discussed in
section 3.3.3) and we would have to repeat our cal-
culation for δ∆> ∆̄ instead.

3.3.3. Numerical results and comparison with
experiments
Getting to the full temperature dependence of the
gaps requires numerical methods. In the calculation
we (a) evaluate numerically the αi integrals (24)
with the dispersion ξi given by equation (1), and (b)
use a self-consistent algorithm to solve numerically
the gap equation (16) together with the determin-
ant condition in equation (23). The cutoff Λ and the
intervalley potential U inter are free parameters. They
are fixed by requiring the critical temperature to be
Tc ≃ 2.83K and the average gap at zero temperat-
ure ∆̄≃ 0.4meV, in line with experimental estim-
ates. While the critical temperature is Tc ≈ 7.2K for
bulk NbSe2, it decreases with the number of layers
[42]. For example, Xi et al [11] give the critical tem-
perature for both the bulk and the monolayer system
which are Tbulk

c ≈ 7.0K and Tmono
c ≈ 3.0K for exfo-

liated NbSe2 monolayers. For molecular beam epi-
taxy grown monolayers the critical temperature has
been found to vary between Tc = 0.9− 2.4K [22, 23,
26, 36]. A temperature dependence of the tunnel-
ing DOS, from which the average zero temperature
gap was estimated to be around 0.4 meV is provided
in [26]. We notice that, having fixed Λ and U inter,
our predictions for the in-plane criticalmagnetic field
discussed in the next section are parameter free. In
figure 4 we provide numerical results for the evolu-
tion of the two gaps with temperature according to
the TB parametrizations by Kim et al [30] andHe et al
[17], denoted by A and B, respectively, in table 1. For
both models we set Λ = 10meV. Further parameters
and the values of∆i(T= 0) are listed in table 2.

As shown in figure 4(a), we find two finite gaps
with the same critical temperature and which assume
their largest values at zero temperature. The size of
the gaps slightly depends on the chosen paramet-
rization but the qualitative behavior is rather sim-
ilar. Figure 4(b) shows a comparison of the experi-
mental data [26], and the theoretical predictions with
the A parametrization. Notice that the experimental

8
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Figure 4. Temperature dependence of the outer and inner gaps,∆1 and∆2, respectively and universal scaling. (a) Numerical
results showing the gaps’ evolution towards a common critical temperature. The two distinct parametrizations A and B in tables 1
and 2 were used. (b) Rescaled theoretical results for the parametrization A and comparison with experimental points. The latter
are digitized data from figure 3 in [26]. (c) A universal scaling of the gaps, independent of the chosen parametrization, is observed
when dividing the theoretical gaps by their zero temperature value, and the temperature by the critical temperature.

Table 2. Interaction parameters and resulting zero temperature
gaps. The difference in the interaction strengths arises due to the
different values of the DOS at the Fermi level for the A and B sets.
The units for the potentials are eVÅ2, the units for the gaps are
meV. The last two columns show the value of ∆̄ evaluated with
equation (31) and δ∆ evaluated with equation (32).

set U intra U inter ∆1(0) ∆2(0) ∆̄ δ∆

A 11.83 18.04 0.469 0.388 0.442 0.0495
B 16.29 24.77 0.42 0.44 0.43 −0.0123

data were fitted with a single gap BCS equation
and the scatter of the data points is such that it
does not preclude the existence of two gaps. Finally,
figure 4(c) demonstrates that our predictions become
BCS-like and independent of the specific parametriz-
ation when the temperature is rescaled by the critical
temperature and the gaps by their respective zero tem-
perature values.

Our approximate formulae (31) and (32) work
well in bothmodels. In themodelA the average gap ∆̄
differs by about 3% from the numerical result, while
in the model B (where the two bands are more sim-
ilar) the two results agree up to 1%. The gap differ-
ences δ∆ in both models are overestimated by about
20%.

It is by now well established that bulk NbSe2
has two gaps, the second gap being due to the elec-
trons in the Se pocket around the Γ point [32].
Recent tunnel junction spectroscopic measurements
of NbSe2 devices with few layers have shown that
the second gap grows weaker with decreasing num-
ber of layers [42], becoming invisible in a bilayer
device [18]. Likewise, the scanning tunneling micro-
scope (STM) measurements of monolayer devices
in [26] do not display clear signatures of a second gap.
In order to establish whether the second gap would
be at all visible in the dI/dV characteristics of an
STM, we calculated the tunneling DOS [43] for both
parametrizations, A and B, of our effective model.

Figure 5. Differential conductance vs bias voltage of
monolayer NbSe2 at several temperatures. This quantity is
proportional to the tunneling density of states. In both
tight-binding parametrizations Tc = 2.83K. Thin grey lines
correspond to the tunneling DOS with only one gap ∆̄. The
two gaps are still recognizable at T≈ 0.1Tc for the A, but
not for the B set. At higher temperatures, the gaps merge
and are not visible in the differential conductance, which is
also almost indistinguishable from the case of one gap ∆̄.

The results are shown in figure 5. The two gaps are
clearly visible in the Amodel at T= 0.1 K. Neverthe-
less, as the temperature rises, their quasiparticle peaks
merge and at T= 0.4 K only a shallower slope indic-
ates that two gaps are present. With the B paramet-
rization the two gaps are too similar in magnitude
to be clearly distinguishable even at T= 0.1 K. Thus
in order to distinguish the two gaps the tunneling
experiments would have to be carried out at very low
temperatures.

3.4. Symmetries of the inner and outer gaps
The symmetry of the gap is defined by its beha-
vior under the reflection of its momentum, i.e. for
s,d-wave symmetry ∆τσ(k) = ∆τ̄σ(−k) while for

9
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p, f-wave ∆τσ(k) =−∆τ̄σ(−k). In systems with
hexagonal lattice and small Fermi surfaces two types
of symmetry allow an isotropic gap, the s and f
symmetry [44], as illustrated in figure 6(a). To see
which one applies to our case, we recall that the
fermionic anticommutation rules relate the gaps of
opposite momenta and spins according to∆τσ(k) =
−∆τ̄ σ̄(−k). From the local isotropy of the gaps, it
also follows that

∆τσ(k) = ∆τσ(−k). (33)

Let us start by considering the easier case of
zero SOC. In this case χ1(k) = χ2(k) (which already
implies |∆1|= |∆2|), and hence α := α1 = α2 in
equation (22) can be factorized from the matrix,(

∆1

∆2

)
=−α

(
Uintra −Uinter

−Uinter Uintra

)(
∆1

∆2

)
. (34)

The first row of this matrix equation yields

∆1 =
1+αUintra

αUinter
∆2, (35)

while the requirement of the existence of non-trivial
solutions, equation (23), implies

α± =− 1

Uintra ∓Uinter
. (36)

Hence,∆1 =±∆2; i.e. in the absence of SOC the
two gaps have the same amplitude but not necessarily
the same sign. Since α is a sum of non-negative num-
bers, it must be positive. Depending on the sign and
relative strength of U intra and U inter either one, none,
or both of α± are positive. Hence, according to the
properties of the s and f gaps upon reflection of k, we
conclude

α+ > 0 → ∆1∆2 > 0, f−wave,
α− > 0 → ∆1∆2 < 0, s−wave.

(37)

When both α± > 0, the dominant is that one
which results in greater energy gain upon condens-
ation, i.e. in the larger amplitude of the gap. From
equation (29) we see that the smaller α results in the
larger gap. Therefore α+ ≶ α− results in a dominant
gap with f (s) symmetry.

When we include the effects of SOC, the two gaps
become mixtures of the s and f character. In partic-
ular, because ∆i(k) =−∆ī(k̄), then it holds for the
average and difference gaps

∆K = 1
2 (∆1 +∆2) : ∆K(k) =−∆K̄(k̄) ( f) ,

δ∆K = 1
2 (∆1 −∆2) : δ∆K(k) = δ∆K̄(k̄) (s).

(38)

Whether ∆K or δ∆K determines the prevalent
symmetry depends on the sign of∆1∆2. In the limit
of vanishing SOC we see again that with ∆1∆2 > 0
the dominant gap is∆K i.e. f -wave, while for∆1∆2 <
0 the main gap is δ∆K with s-wave symmetry.

Figure 6. Symmetries of the superconducting gaps induced
by spin conserving interactions in the absence of spin–orbit
coupling (the two Fermi surfaces in each pocket are drawn
as split only for clarity). (a) In a hexagonal lattice with
Fermi surfaces around the Dirac valleys the two symmetries
consistent with locally isotropic gaps are of the s or f type.
(b) Leading gap symmetries when two competing scattering
processes can take place, depending on the sign and relative
strength of U intra and U inter, and without SOC. When only
one, repulsive, interaction is present, pairing does not
occur.

4. Effects of an in-plane field

We now turn to the effect of an in-plane field on
the superconducting state of monolayer NbSe2. We
are mostly interested in the temperature dependence
of the critical magnetic field Bc(T). We start by first
considering the system without electronic interac-
tions but with an additional magnetic field B= Bêx
along the x-axis. The single particle grandcanonical
Hamiltonian at finite magnetic fields is

ĤB −µN̂=
∑
kτσ

ξτσ(k)̂c
†
kτσ ĉkτσ +µBB

∑
kτσ

ĉ †
kτσ ĉkτσ̄,

(39)

where µB is the Bohr magneton. The above Hamilto-
nian can be diagonalized using the ansatz(

ĉkτ↑
ĉkτ↓

)
=

(
akτ bkτ
−bkτ akτ

)(
f̂kτ+
f̂kτ−

)
,

|akτ |2 + |bkτ |2 = 1. (40)

Our choice of the field-dependent parameters is

akτ
bkτ

}
=±

√√√√1

2

(
1± δξτ (k)√

(δξτ (k))2 +(µBB)2

)
,

(41)

with 2δξτ (k) = ξτ↑(k)− ξτ↓(k). It results in the
eigenenergies

ξ̃τn(k) = ξ̄τ (k)±
√
(δξτ (k))2 +(µBB)2 , (42)

where 2ξ̄τ (k) = ξτ↑(k)+ ξτ↓(k). These energies
depend on the index n=+,− and not on the spin
σ anymore since the magnetic field is oriented per-
pendicularly to the spin quantization axis set by the

10
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Ising SOC. Remembering the time-reversal relation
ξτ̄ σ̄(k̄) = ξτσ(k) for the single-particle energies at
zero magnetic field, one finds for the coefficients and
energies the relations

akτ =−bk̄τ̄ , ξ̃τn(k) = ξ̃τ̄n(k̄). (43)

In order to describe the influence of the mag-
netic field on the superconducting phase one now
has to express the mean-field interaction term in
equation (11) in the new eigenbasis, i.e. in terms of
the operators f̂kτn. Doing so, one eventually arrives
at the full mean-field Hamiltonian Ĥ= ĤB + Ĥmf

int

describing superconductivity in an Ising spin–orbit
coupled TMDC monolayer in the presence of an in-
plane magnetic field,

Ĥ−µN̂−C

=
∑
k,n

ξ̃Kn(k)
(̂
f †kKn f̂kKn + f̂ †

k̄K̄n
f̂k̄K̄n

)
+
∑
k,n

∆Kn(k)̂f
†
kKn f̂

†
k̄K̄n

+ h.c.

+
∑
k

∆K±(k)
(̂
f †kK+ f̂ †

k̄K̄− − f̂ †kK− f̂ †
k̄K̄+

)
+ h.c..

(44)

Here, we have defined the three new pairings which
can be expressed in terms of the gaps ∆τσ(k)
(at B= 0 they obey ∆K↑ =−∆K ′↓ =∆1, ∆K↓ =
−∆K ′↑ =∆2). The three new pairings are

∆K+(k) =−(a2kK∆K↑(k)+ b2kK∆K↓(k)), (45)

∆K−(k) = b2kK∆K↑(k)+ a2kK∆K↓(k), (46)

∆K±(k) = akKbkK(∆K↑(k)−∆K↓(k)). (47)

The first two pairings∆Kn(k) couple electrons of
differentK valleys but the same energy, while∆K±(k)
describes a pairing of electrons with different ener-
gies. In the latter case, it depends on the amplitude
of the magnetic field values and of the superconduct-
ing pairing energies to which extent this term can
contribute. Notice that equation (43) ensures that
the new pairings∆Kn(k) have f -wave character while
∆K±(k) is s-wave like, cf also equation (38).

4.1. Diagonalization of the mean field Hamiltonian
in planar magnetic field
To get to the gap equation which now includes the
magnetic field we need to evaluate the averages in the
definition of the order parameter in equation (11).
This requires to find the new set of Bogoliubov
quasiparticles which diagonalize the Hamiltonian in
equation (44). To this aim we first rewrite it in the
Bogoliubov-de Gennes (BdG) form

Ĥ−µN̂− C̃=
∑
k

Ψ̂ †
k ĤBdG(k)Ψ̂k , (48)

where we introduced the BdG Hamiltonian ĤBdG(k)
and the Nambu spinor Ψ̂k, respectively. They are
given by

ĤBdG(k) =


ξ̃K+(k) 0 ∆+(k) ∆±(k)

0 ξ̃K−(k) −∆±(k) ∆−(k)
∆∗

+(k) −∆∗
±(k) −ξ̃K+(k) 0

∆∗
±(k) ∆∗

−(k) 0 −ξ̃K−(k)

 ,

(49)

where we used the abbreviation ∆Kn =∆n, ∆K± =
∆±, and

Ψ̂k =
(̂
fkK+, f̂kK−, f̂ †−kK ′+, f̂ †−kK ′−

)T
. (50)

Getting the eigenvalues of the BdG matrix above
is a simple task. In contrast, finding the unitary trans-
formation matrix U, i.e. the corresponding normal-
ized eigenvectors, is rather intricate. Our way to get
to their analytic form is discussed in the appendix.
In the following we are going to refer to the posit-
ive eigenenergies as Ẽn(k) (cf equation (57)), and to
the entries ofU as uij (cf equation (A12)). The spinor

Γ̂k = (γ̂kK+, γ̂kK−, γ̂
†
−kK ′+, γ̂

†
−kK ′−)

T, which contains
the new Bogoliubov quasiparticle operators γ̂kτn, is
related to the f̂ operators by Ψ̂k = UΓ̂k. The Hamilto-
nian finally becomes diagonal in this basis

Ĥ−µN̂− C̃=
∑
k,n

Ẽn(k)
(
γ̂ †
kτnγ̂kτn + γ̂ †

k̄ τ̄n
γ̂k̄ τ̄n

)
.

(51)

Notice that, according to equation (57), the qua-
siparticle spectrum now displays a quite intricate
dependence on the three pairings∆n(k) and∆±(k).
This suggests a multitude of different superconduct-
ing phases, possibly even of non-trivial topological
character, in line with [12]. We postpone such ana-
lysis to a future work.

The focus here is rather on the benchmark of the
theory against available data at finite magnetic field;
explicitly, on the dependence of the critical magnetic
field on temperature. As discussed above, having fixed
the values of Λ andU intra to evaluate the temperature
dependence of the zero-field gaps, the theory is para-
meter free if we take a g-factor of 2. Thus, an agree-
ment with the experimental data will give us confid-
ence in the predictive power of the theory for future
investigations.

4.2. Gap equation for the critical in-plane field
To get the new gap equation we express the operators
ĉ, entering the definition of the gaps∆τσ , in terms of
the new quasiparticle operators γ̂,

ĉkK↑
ĉkK↓

ĉ †
−kK ′↑

ĉ †
−kK ′↓

= V(k)


γ̂kK+

γ̂kK−

γ̂ †
−kK ′+

γ̂ †
−kK ′−

 . (52)

11
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The unitary transformation is defined by

V(k) =

(
WkK 02×2

02×2 W∗
−kK ′

)
U, (53)

with Wkτ the block matrix in equation (40). It has
elements

V(k) =


v11(k) v12(k) v∗41(k) −v∗42(k)
v21(k) v22(k) v∗31(k) −v∗32(k)
v31(k) v32(k) −v∗21(k) v∗22(k)
v41(k) v42(k) −v∗11(k) v∗12(k)

 .

(54)

By inserting the relations from equation (52) into the
definition of the gaps in equation (11), one can derive
the new set of coupled gap equations for TMDC
monolayers in an in-plane magnetic field. They have
the form in equation (16), with a magnetic field
dependent matrix

∆(k) =−
∑
k ′

M̃(k ′,B)∆(k ′). (55)

Explicitly it holds

(
∆1(k)
∆2(k)

)
=−

∑
k ′

[((
V intra
kk ′ g1(k ′)−V inter

kk ′ h1(k ′)
)
χ̃1(k ′)

(
V intra
kk ′ h2(k ′)−V inter

kk ′ g2(k ′)
)
χ̃2(k ′)(

V intra
kk ′ h1(k ′)−V inter

kk ′ g1(k ′)
)
χ̃1(k ′)

(
V intra
kk ′ g2(k ′)−V inter

kk ′ h2(k ′)
)
χ̃2(k ′)

)(
∆1(k ′)
∆2(k ′)

)]
,

(56)

where the functions χ̃1(k ′), χ̃2(k ′) are the defined as
in equation (18), but now with the new eigenener-
gies Ẽ+(B), and Ẽ−(B), respectively. The gaps∆1,∆2

are, as before, the final two gaps for the two bands

of quasiparticle excitations. Due to the action of the
in-plane magnetic field, the elements of M̃(k ′,B) are
a mixture of the original interactions Vintra/inter

kk ′ . The
energies read,

Ẽn =
1√
2

√√√√E2+ + E2− + 2|∆±|2 ±

√(
E2+ − E2−

)2
+ 4|∆±|2

[(
ξ̃+ − ξ̃−

)2
+ |∆+|2 + |∆−|2

]
− 8Re

(
∆2

±∆
∗
+∆

∗
−
)
,

(57)

where E± are the quasiparticle energies with B= 0 (cf
appendix for the derivation of the involved quantit-
ies).

The remaining dimensionless functions are

g1(k) =−2Ẽ+(k)

∆1(k)
v11(k)v

∗
41(k), (58)

h1(k) =−2Ẽ+(k)

∆1(k)
v21(k)v

∗
31(k), (59)

g2(k) =−2Ẽ−(k)

∆2(k)
v22(k)v

∗
32(k), (60)

h2(k) =−2Ẽ−(k)

∆2(k)
v12(k)v

∗
42(k). (61)

The v-products in the above expressions are given
by

v11v
∗
41 = a2Kku11u

∗
31 − b2Kku21u

∗
41

+ aKkbKk (u21u
∗
31 − u11u

∗
41) (62)

v21v
∗
31 = b2Kku11u

∗
31 − a2Kku21u

∗
41

− aKkbKk (u21u
∗
31 − u11u

∗
41) (63)

v22v
∗
32 = b2Kku12u

∗
32 − a2Kku22u

∗
42

− aKkbKk (u22u
∗
32 − u12u

∗
42) (64)

v12v
∗
42 = a2Kku12u

∗
32 − b2Kku22u

∗
42

+ aKkbKk (u22u
∗
32 − u12u

∗
42) . (65)

For simplicity, we left out the k dependence of
the entries of the unitary transformations v,u in
the above expression and will drop the index τ = K
in ak,bk, defined in equation (40), from now on.
The explicit form of the functions g i and hi remains

12
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unknown due to the rather complicated expressions
for the transformation in equation (A12). However,
this is not so dramatic for our purpose, as we will see
later on.

Before we proceed, let us observe that in the
case B= 0 it holds a2k = 1 and b2k = 0, and in
turn ∆+ =−∆1, ∆− =∆2 and ∆± = 0. In this
limit the unitary transformation greatly simplifies,
we recover the Bogoliubov transformation from
equation (13) and we find gi = 1, hi = 0. [45] The
functions χ̃i(k) and their coefficients, given by

the effective potentials in equation (56), reduce to
their much simpler form in equation (16) and we
recover the zero field gap equation from the previous
section.

To address the case B ̸= 0 we first assume con-
stant interaction potentials which again leads to k-
independent gaps. By defining the new quantities
α̃i =

1
NΩ

∑
k gi(k)χ̃i(k) and β̃i =

1
NΩ

∑
k hi(k)χ̃i(k)

we can rewrite the gap equation as

0=M(B) ·∆=

[
1+

(
Uintraα̃1 −Uinterβ̃1 Uintraβ̃2 −Uinterα̃2

Uintraβ̃1 −Uinterα̃1 Uintraα̃2 −Uinterβ̃2

)](
∆1

∆2

)
. (66)

The relation above yields amodified condition for
non-trivial solutions of the gap equation

det M̃(B) = UattrUinterα̃1α̃2 +Uintra(α̃1 + α̃2)+ 1

−
[
UattrUintraβ̃1β̃2 +Uinter

(
β̃1 + β̃2

)]
= 0.
(67)

We now turn to the determination of the critical
magnetic field Bc(T) at a given temperature T. The
procedure is similar to the oneweused to find the crit-
ical temperature. There, we considered a large enough
temperature which closes both gaps, i.e. we set the
gaps to zero, and used the condition from the determ-
inant in equation (23) to obtain Tc. We will now con-
sider a fixed temperature T< Tc and will look for
the magnetic field Bc(T) that closes both gaps. For
this purpose, we use the magnetic field dependent
determinant equation, equation (67). At the critical
field the quasiparticle dispersions Ẽn(k) reduce to the
eigenenergies ξ̃n(k) found in equation (42). However,
the treatment of the limit behavior of the functions
g i and hi requires more attention when ∆1,∆2 → 0.
Due to the special form of the unitary transformation
U found in the appendix, we cannot set both of them
to zero simultaneously since this leads to diverging
prefactors. What we can do instead is treating g1,h1
and g2,h2 separately by first keeping one of the two
gaps finite and setting the other one to zero. By this
the entries uij of the unitary transformation can be
written in such a way that the divergences cancel [46].
Some of the terms which are multiplied by the still
finite gap will eventually drop out upon setting also
this gap to zero. The remaining parts finally yield the
quite compact expressions

g0i=1,2(k) := gi=1,2(k)
∣∣
∆1=∆2=0

(68)

= a2k

(
a2k+ b2k

2ξ̃±(k)

ξ̃+(k)+ ξ̃−(k)

)

= a2k

(
1± b2k

ξ̃+(k)− ξ̃−(k)

ξ̃+(k)+ ξ̃−(k)

)
, (69)

h0i=1,2(k) := hi=1,2(k)
∣∣
∆1=∆2=0

(70)

= a2kb
2
k

(
1− 2ξ̃±(k)

ξ̃+(k)+ ξ̃−(k)

)

=∓a2kb
2
k
ξ̃+(k)− ξ̃−(k)

ξ̃+(k)+ ξ̃−(k)
.

Notice that

g0i (k)+ h0i (k) = a2k. (71)

In order to find the numerical values of α̃i and
β̃i, we turn the momentum sums into integrals over
k. In the case B= 0 the next step was to move
the integration from the momentum to the energy
space. In the present case, the function χ̃i(k) only
depends on one of the eigenenergies ξ̃n(k), but the
functions g0i and h0i depend on both ξ̃+(k) and
ξ̃−(k). Hence it is now easier to directly calculate the
momentum integrals by using polar coordinates. One
finds

α̃i=1,2 =
1

(2π)2

ˆ
d2kg0i (k)χ̃i(k)

=
1

2π

ˆ kmax
i

kmin
i

dkkg0i (k)
tanh

β

2
ξ̃±(k)

2ξ̃±(k)
, (72)

13



2D Mater. 10 (2023) 025008 S Hörhold et al

Figure 7. Temperature dependence of the critical magnetic
field. (a) Open circles are the numerical results, solid lines

are the fits to B
||
c (T) = B

||
c (0)

√
1−T/Tc0, where Tc0 is the

critical temperature with B∥ = 0. The prefactors are

B
||
c,A(0) = 250 T, B

||
c,B(0) = 800 T. (b) Rescaled results,

where the grey line is
√

1−T/Tc0, and orange points are
digitized data from figure 4 in [11].

α̃i=1,2 + β̃i=1,2 =
∑
k

a2k
tanh

β

2
ξ̃±(k)

2ξ̃±(k)

=
1

2π

ˆ kmax
i

kmin
i

dkka2k
tanh

β

2
ξ̃±(k)

2ξ̃±(k)
,

(73)

wherewe used the sum rule for the functions g i and hi.
It allowed us to express β̃i in terms of α̃i and obtain a
much simpler integral. The boundaries for the integ-
ral over k= |k| are the momentum cutoffs corres-
ponding to ±Λ in the energy integrals from before.
They are defined by ξi(kmax/min

i ) =±Λ, with ξi(k) in
equation (3).

Equipped with this, we are finally able to numer-
ically solve the condition for non-trivial solu-
tions defined in equation (67). The results of the
simulations are shown in figure 7, again for the A and
B parametrizations, as well as in comparison with the
experimental data in [26]. On the one hand, both
parametrizations display the expected behavior

B||
c (T) = B||

c (0)
√
1−T/Tc0 (74)

in the vicinity of the critical temperature at zero
field, Tc0, in agreement with the experimental results
[26]. On the other hand, the two sets A and B differ
qualitatively as the temperature is decreased. Within

the A parametrization B||
c (T) displays almost a linear

behavior at intermediate temperature, again in line
with the experiment. The B parametrization leads to
much larger zero temperature critical fields than the
A one, and the scaled curve starts to deviate from the
experimental data as the temperature decreases well
below Tc.

Since the superconducting gap at the K pockets
is most protected against the in-plane field, it is the
dominant factor in determining Bc. While the gap at
the Γ pocket can close faster [12, 25], superconduct-
ivity survives until the K pocket gaps are destroyed.

5. Conclusions

In summary, we have shown that two-bands super-
conductivity can naturally arise from repulsive
interactions in NbSe2. At its origin is the fragment-
ation of the Fermi surface, most importantly featur-
ing two disjoint K and K′ pockets. The competition
between long-range and local scattering processes
results in correlating the electronic states with oppos-
ite momentum and spin, leading to the formation
of Cooper pairs. We have developed a fully micro-
scopic approach based on a low energy, two-bands
model for NbSe2, including the different profiles
of the SOI-split bands. Two different tight-binding
parametrizations for NbSe2, called A and B, are used.
Since we keep track of the different profiles of the
bands and of the SOC, the two bands are gapped with
two distinct gaps which vanish at the same critical
temperature. Similar to conventional single gap BCS
theory, we demonstrated a universal behavior of the
scaled average gap ∆̄(T)/∆̄(0) as a function of T/Tc.
The temperature evolution of ∆̄(T)/∆̄(0) matches
the data in [26], which do not exclude the presence of
two distinct gaps. At finite magnetic field, due to the
breaking of time-reversal symmetry, the gap equation
becomes more complex, involving additional scatter-
ing processes. Here we focused on the dependence of
the critical in-plane magnetic field on temperature. A
quantitative agreement with the scaled data in [11],
in particular a region of linear behavior of Bc(T), was
found for one of the two chosen parametrizations,
giving us confidence in the used microscopic low
energy modeling. The investigation of the different
phases that our theory predicts at finitemagnetic field
will, especially in relation to the possible observation
of triplet superconductivity in [18], be the object of
our future work.
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Appendix . Diagonalization of the two
bands superconducting Hamiltonian in
finite in-plane magnetic field

In the following we provide a way to diagonalize the
BdGHamiltonian in equation (49). Notice that in this
appendix, for ease of notation, we use the subscripts
1,2 instead of+,−. The gaps∆1,2 used here are there-
fore not the gaps ∆1,2 from the main text. Also, we
are going to introduce several new quantities whose
expression is listed at the very end of the section. Let
us now consider the slightly more general case: Given
ξ̃1, ξ̃2 ∈ R and∆1,∆2,∆12 ∈ C, we wish to diagonal-
ize the following hermitian matrix,

H=


ξ̃1 0 ∆1 ∆12

0 ξ̃2 −∆12 ∆2

∆∗
1 −∆∗

12 −ξ̃1 0
∆∗

12 ∆∗
2 0 −ξ̃2

 (A1)

i.e., we look for the eigenvalues and the unitary trans-
formation that leads to the diagonal form of H. We
start by first dividing the matrix into the two parts

H=H0 +H12 =


ξ̃1 0 ∆1 0
0 ξ̃2 0 ∆2

∆∗
1 0 −ξ̃1 0
0 ∆∗

2 0 −ξ̃2



+


∆12

−∆12

−∆∗
12

∆∗
12

 , (A2)

and proceed by diagonalizing just H0. Afterwards
we express H12 in the eigenbasis of H0 to get to the
matrix form of H in the new basis. Repeating this
procedure eventually leads to a block diagonal matrix
which can easily be diagonalized. The unitary trans-
formation that diagonalizesH0 is rendered as

U0 =


∆1/η1 0 −(E1 − ξ̃1)/η1 0

0 ∆2/η2 0 −(E2 − ξ̃2)/η2
(E1 − ξ̃1)/η1 0 ∆∗

1/η1 0
0 (E2 − ξ̃2)/η2 0 ∆∗

2/η2

 , (A3)

where the values of the entries fulfill (|∆n|/ηn)2 =
1
2

(
1+ ξ̃n/En

)
and [(En − ξ̃n)/ηn]

2 = 1
2

(
1− ξ̃n/En

)
.

In the new basis,H reads

H̃= U †
0 HU0 =


E1

E2
−E1

−E2



+


0 Y 0 Z
Y∗ 0 −Z 0
0 −Z∗ 0 Y∗

Z∗ 0 Y 0

 . (A4)

Notice that

|Y|2 + |Z|2 = |∆12|2 , E1E2(|Y|2 − |Z|2)
=−ξ̃1ξ̃2|∆12|2 −Re(∆2

12∆
∗
1∆

∗
2 ). (A5)

Even though the total number of entries is
unchanged, we are now left with only two complex
parameters Y and Z instead of the three provided by

the gaps ∆1, ∆2 and ∆12 from before. In the second
step we diagonalize the block diagonal part H̃Y of
H̃; afterwards we express H̃Z, the off-diagonal mat-
rix which contains the parameter Z, in the new eigen-
basis. Here, the corresponding unitary transforma-
tion is given by

U1 =
1

κ1


E2 −G1 −Y
−Y∗ −(E2 −G1)

Y∗ E2 −G1

−(E2 −G1) Y

 ,

(A6)

and we have the relation (E2 −G1) =−(E1 −G2). In
the new basis H̃ looks like

K= U †
1 H̃U1 =


G1

G2

−G2

−G1



+


R S
T −R

R∗ T∗

S∗ −R∗

 , (A7)
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which appears to be in a very similar form as the
matrix H we have started with. Notice, however,
that we have the important relations |S|2 = |T|2 and
TR∗ = S∗R. The latter is the reason why we get
a block diagonal matrix after a final rotation. For
this, we first consider the off-diagonal contribution
KR of K containing the R elements. One finds the
transformation

U2 =
1
κ2


G2 + G̃1 0 0 R

0 R −(G1 + G̃2) 0

R∗ 0 0 −(G1 + G̃2)

0 G2 + G̃1 R∗ 0


(A8)

with the relation G2 + G̃1 = G1 + G̃2. Performing the
rotation now simply rearranges the entries S and T
and we are left with the block diagonal matrix

K̃= U †
2 KU2 =


G̃1

−G̃1

G̃2

−G̃2



+


0 S
S∗ 0

0 T
T∗ 0

 , (A9)

whose diagonalization is trivial and can now be done
within one step. The fourth and last transformation
assumes the form

U3 =


(G̃1 + Ẽ1)/λ1 0 S/λ1 0

S∗/λ1 0 −(G̃1 + Ẽ1)/λ1 0
0 (G̃2 + Ẽ2)/λ2 0 T/λ2

0 T∗/λ2 0 −(G̃2 + Ẽ2)/λ2

 (A10)

and finally gives

U †
3 K̃U3 =


Ẽ1

Ẽ2
−Ẽ1

−Ẽ2

 . (A11)

Ultimately, the full unitary transformation, which
diagonalizes the matrix H in equation (A1), can be

explicitly calculated from the product of all U ’s. We
conclude the diagonalization with

U= U0U1U2U3 =


u11 u12 u∗31 −u∗32
u21 u22 −u∗41 u∗42
u31 u32 −u∗11 u∗12
u41 u42 u∗21 −u∗22


(A12)

where each entry has a very similar counterpart

η1κ1κ2λ1 · u11 =∆1

[
(E2 −G1)(G2 + G̃1)(G̃1 + Ẽ1)−YRS∗

]
− (E1 − ξ̃1)

[
S∗(E2 −G1)(G2 + G̃1)+Y∗R∗(G̃1 + Ẽ1)

]
,

η2κ1κ2λ2 · u22 =∆2

[
(E2 −G1)(G2 + G̃1)(G̃2 + Ẽ2)−YRS∗

]
− (E2 − ξ̃2)

[
T∗(E2 −G1)(G2 + G̃1)+YR∗(G̃2 + Ẽ2)

]
,

η1κ1κ2λ2 · u12 =∆1

[
Y(G2 + G̃1)(G̃2 + Ẽ2)+RT∗(E2 −G1)

]
− (E1 − ξ̃1)

[
R∗(E2 −G1)(G̃2 + Ẽ2)−YS∗(G2 + G̃1)

]
,

−η2κ1κ2λ1 · u21 =∆2

[
Y∗(G2 + G̃1)(G̃1 + Ẽ1)+RS∗(E2 −G1)

]
− (E2 − ξ̃2)

[
R∗(E2 −G1)(G̃1 + Ẽ1)−YS∗(G2 + G̃1)

]
,

η1κ1κ2λ1 · u31 =∆∗
1

[
S∗(E2 −G1)(G2 + G̃1)+Y∗R∗(G̃1 + Ẽ1)

]
+(E1 − ξ̃1)

[
(E2 −G1)(G2 + G̃1)(G̃1 + Ẽ1)−YRS∗

]
η2κ1κ2λ2 · u42 =∆∗

2

[
T∗(E2 −G1)(G2 + G̃1)+YR∗(G̃2 + Ẽ2)

]
+(E2 − ξ̃2)

[
(E2 −G1)(G2 + G̃1)(G̃2 + Ẽ2)−YRS∗

]
16
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η1κ1κ2λ2 · u32 =∆∗
1

[
R∗(E2 −G1)(G̃2 + Ẽ2)−YS∗(G2 + G̃1)

]
+(E1 − ξ̃1)

[
Y(G2 + G̃1)(G̃2 + Ẽ2)+RT∗(E2 −G1)

]
,

−η2κ1κ2λ1 · u41 =∆∗
2

[
R∗(E2 −G1)(G̃1 + Ẽ1)−YS∗(G2 + G̃1)

]
+(E2 − ξ̃2)

[
Y∗(G2 + G̃1)(G̃1 + Ẽ1)+RS∗(E2 −G1)

]
,

and where we used Y∗S= YT. Further using the relations equation (A5) leads to the explicit form of the
eigenvalues. They read

Ẽn =
1√
2

√√√√E21 + E22 + 2|∆12|2 ±

√
(E21 − E22)

2
+ 4|∆12|2

[(
ξ̃1 − ξ̃2

)2
+ |∆1|2 + |∆2|2

]
− 8Re(∆2

12∆
∗
1∆

∗
2 ).

(A13)

The transformationU, however, is still only given
in an implicit form where each of our introduced
abbreviations appear.

The list below shows the abbreviations intro-
duced in the diagonalization process. Here, each
block corresponds to the quantities that appear in
one of the transformations U i and in the trans-
formed matrix upon applying this transformation.

I. En =
√
ξ̃2n + |∆n|2 Y=

1

η1η2

[
∆12∆

∗
1

(
E2 − ξ̃2

)
−∆∗

12∆2

(
E1 − ξ̃1

)]
ηn =

√
2En
(
En − ξ̃n

)
Z=

1

η1η2

[
∆12∆

∗
1∆

∗
2 +∆∗

12

(
E1 − ξ̃1

)(
E2 − ξ̃2

)]

II. Gn =
1

2

[
(E1 + E2)±

√
(E1 − E2)

2
+ 4|Y|2

]
R=

1

κ21
Z
[
|Y|2 − (E2 −G1)

2
]

κ1 =

√
(E2 −G1)

2
+ |Y|2 S=

2

κ21
YZ(E1 −G1)

T=
2

κ21
Y∗Z(E2 −G1)

III. G̃n =±1

2

[
(G1 −G2)±

√
(G1 +G2)

2
+ 4|R|2

]
κ2 =

√(
G2 + G̃1

)2
+ |R|2

IV. Ẽn =
√
G̃2
n + |S|2 λn =

√(
G̃n + Ẽn

)2
+ |S|2
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